Tracking a Real Liver Using a Virtual Liver and an Experimental Evaluation with Kinect v2

被引:3
|
作者
Noborio, Hiroshi [1 ]
Watanabe, Kaoru [1 ]
Yagi, Masahiro [1 ]
Ida, Yasuhiro [1 ]
Nankaku, Shigeki [1 ]
Onishi, Katsuhiko [1 ]
Koeda, Masanao [2 ]
Kon, Masanori [2 ]
Matsui, Kosuke [2 ]
Kaibori, Masaki [2 ]
机构
[1] Osaka Electrocommun Univ, Dept Comp Sci, Osaka, Japan
[2] Kansai Med Univ, Med Sch, Osaka, Japan
关键词
Depth image; Graphics processing unit; Parallel processing; Randomized steepest descent method; Z-buffering; DEPTH-MATCHING ALGORITHM; REGISTRATION;
D O I
10.1007/978-3-319-31744-1_14
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In this study, we propose a smart transcription algorithm for translation and/or rotation motions. This algorithm has two phases: calculating the differences between real and virtual 2D depth images, and searching the motion space defined by three translation and three rotation degrees of freedom based on the depth differences. One depth image is captured for a real liver using a Kinect v2 depth camera and another depth image is obtained for a virtual liver (a polyhedron in stereo-lithography (STL) format by z-buffering with a graphics processing unit). The STL data are converted from Digital Imaging and Communication in Medicine (DICOM) data, where the DICOM data are captured from a patient's liver using magnetic resonance imaging and/or a computed tomography scanner. In this study, we evaluated the motion precision of our proposed algorithm based on several experiments based using a Kinect v2 depth camera.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [31] 3D Eye-Tracking Method Using HD Face Model of Kinect v2
    Kim, Byoung Cheul
    Lee, Eui Chul
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING: FUTURETECH & MUE, 2016, 393 : 235 - 242
  • [32] Depth completion for kinect v2 sensor
    Wanbin Song
    Anh Vu Le
    Seokmin Yun
    Seung-Won Jung
    Chee Sun Won
    Multimedia Tools and Applications, 2017, 76 : 4357 - 4380
  • [33] Eye Gaze Correction for Video Conferencing Using Kinect v2
    Ko, Eunsang
    Jang, Woo-Seok
    Ho, Yo-Sung
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT II, 2015, 9315 : 571 - 578
  • [34] Measurement of Sleep Data Using Kinect V2 and Thermovision Camera
    Seo, Kwi-Bin
    Kim, Sung-Yeup
    Hong, Min
    ADVANCED SCIENCE LETTERS, 2017, 23 (12) : 12762 - 12768
  • [35] Translation of Sign Language Into Text Using Kinect for Windows v2
    Amatya, Preeti
    Sergieieva, Kateryna
    Meixner, Gerrit
    ACHI 2018: THE ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER-HUMAN INTERACTIONS, 2018, : 19 - 26
  • [36] Facial Recognition and Recall Using Kinect V2 for Patient Verification
    Silverstein, E.
    Snyder, M.
    MEDICAL PHYSICS, 2016, 43 (06) : 3718 - 3718
  • [37] A Reliable Robot Workspace Monitoring System Using Kinect v2
    Mohan, Jithin
    Ashok, S.
    2018 INTERNATIONAL CONFERENCE ON RECENT INNOVATIONS IN ELECTRICAL, ELECTRONICS & COMMUNICATION ENGINEERING (ICRIEECE 2018), 2018, : 686 - 689
  • [38] Improving Robustness of Shoulder Gesture Recognition Using Kinect V2 Method for Real-Time Movements
    Chandrasekhar, S.
    Mhala, N. N.
    SMART INTELLIGENT COMPUTING AND APPLICATIONS, VOL 2, 2020, 160 : 31 - 40
  • [39] Real-time approach for gait analysis using the Kinect v2 sensor for clinical assessment purpose
    Burle, Alexandre de Queiroz
    de Gusmao Lafayette, Thiago Buarque
    Fonseca, Jose Roberto
    Teichrieb, Veronica
    Fontes Da Gama, Alana Elza
    2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020), 2020, : 144 - 153
  • [40] REAL-TIME MULTI-VIEW VOLUMETRIC RECONSTRUCTION OF DYNAMIC SCENES USING KINECT V2
    Satnik, Andrej
    Izquierdo, Ebroul
    2018 - 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO (3DTV-CON), 2018,