Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA

被引:5
|
作者
Pena Arellano, Fabian Erasmo [1 ]
Sekiguchi, Takanori [2 ]
Fujii, Yoshinori [1 ]
Takahashi, Ryutaro [1 ]
Barton, Mark [1 ]
Hirata, Naoatsu [1 ]
Shoda, Ayaka [1 ]
van Heijningen, Joris [3 ]
Flaminio, Raffaele [1 ]
DeSalvo, Riccardo [4 ,5 ]
Okutumi, Koki [6 ]
Akutsu, Tomotada [1 ]
Aso, Yoichi [1 ]
Ishizaki, Hideharu [1 ]
Ohishi, Naoko [1 ]
Yamamoto, Kazuhiro [2 ]
Uchiyama, Takashi [2 ]
Miyakawa, Osamu [2 ]
Kamiizumi, Masahiro [2 ]
Takamori, Akiteru [7 ]
Majorana, Ettore [8 ]
Agatsuma, Kazuhiro [3 ]
Hennes, Eric [3 ]
van den Brand, Jo [3 ]
Bertolini, Alessandro [3 ]
机构
[1] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[2] Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan
[3] Natl Inst Subat Phys, Nikhef Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[4] Univ Sannio Benevento, Waves Grp, I-82100 Benevento, Italy
[5] Calif State Univ Los Angeles, 5151 State Univ Dr, Los Angeles, CA 90032 USA
[6] Grad Univ Adv Studies, SOKENDAI, Hayama, Kanagawa 2400193, Japan
[7] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, 1-1-1 Yayoi, Tokyo 1130032, Japan
[8] INFN, Ple Moro 2, I-00185 Rome, Italy
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2016年 / 87卷 / 03期
关键词
D O I
10.1063/1.4942909
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optical loss study of molecular layer for a cryogenic interferometric gravitational-wave detector
    Tanioka, Satoshi
    Hasegawa, Kunihiko
    Aso, Yoichi
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [22] Development of a cryocooler vibration-reduction system for a cryogenic interferometric gravitational wave detector
    Tomaru, T
    Suzuki, T
    Haruyama, T
    Shintomi, T
    Sato, N
    Yamamoto, A
    Ikushima, Y
    Koyama, T
    Li, R
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S1005 - S1008
  • [23] THE GLASGOW 10-M PROTOTYPE LASER INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTOR
    ROBERTSON, DI
    MORRISON, E
    HOUGH, J
    KILLBOURN, S
    MEERS, BJ
    NEWTON, GP
    ROBERTSON, NA
    STRAIN, KA
    WARD, H
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (09): : 4447 - 4452
  • [24] Prototype superfluid gravitational wave detector
    Vadakkumbatt, V.
    Hirschel, M.
    Manley, J.
    Clark, T. J.
    Singh, S.
    Davis, J. P.
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [25] Development of advanced photon calibrator for Kamioka gravitational wave detector (KAGRA)
    Inoue, Y.
    Hsieh, B. H.
    Chen, K. H.
    Chu, Y. K.
    Ito, K.
    Kozakai, C.
    Shishido, T.
    Tomigami, Y.
    Akutsu, T.
    Haino, S.
    Izumi, K.
    Kajita, T.
    Kanda, N.
    Lin, C. S.
    Lin, F. K.
    Moriwaki, Y.
    Ogaki, W.
    Pang, H. F.
    Sawada, T.
    Tomaru, T.
    Suzuki, T.
    Tsuchida, S.
    Ushiba, T.
    Washimi, T.
    Yamamoto, T.
    Yokozawa, T.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (07):
  • [26] Room temperature gravitational wave bar detector with optomechanical readout
    Conti, L
    De Rosa, M
    Marin, F
    Taffarello, L
    Cerdonio, M
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (06) : 3589 - 3595
  • [27] Room temperature gravitational wave bar detector with optomechanical readout
    Conti, L. (conti@lnl.infn.it), 1600, American Institute of Physics Inc. (93):
  • [28] Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector
    Hirose, Eiichi
    Craig, Kieran
    Ishitsuka, Hideki
    Martin, Iain W.
    Mio, Norikatsu
    Moriwaki, Shigenori
    Murray, Peter G.
    Ohashi, Masatake
    Rowan, Sheila
    Sakakibara, Yusuke
    Suzuki, Toshikazu
    Waseda, Kouichi
    Watanabe, Kyohei
    Yamamoto, Kazuhiro
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [29] Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector
    Sato, N
    Haruyama, T
    Kanda, N
    Kuroda, K
    Miyoki, S
    Ohashi, M
    Saito, Y
    Shintomi, T
    Suzuki, T
    Tatsumi, D
    Taylor, C
    Tomaru, T
    Uchiyama, T
    Yamamoto, A
    CRYOGENICS, 2003, 43 (07) : 425 - 429
  • [30] Maximum heat transfer along a sapphire suspension fiber for a cryogenic interferometric gravitational wave detector
    Tomaru, T
    Suzuki, T
    Uchiyama, T
    Yamamoto, A
    Shintomi, T
    Taylor, CT
    Yamamoto, K
    Miyoki, S
    Ohashi, M
    Kuroda, K
    PHYSICS LETTERS A, 2002, 301 (3-4) : 215 - 219