Graphitic carbon nitride based hydrogen treated disordered titanium dioxide core-shell nanocatalyst for enhanced photocatalytic and photoelectrochemical performance

被引:41
作者
Singh, Aadesh P. [1 ]
Arora, Praduman [2 ]
Basu, Suddhasatwa [2 ]
Mehta, Bodh R. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Phys, New Delhi 110016, India
[2] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India
关键词
a-TiO2/c-TiO2; g-C3N4; Photocatalysts; Photoluminescence; Water splitting; VISIBLE-LIGHT IRRADIATION; OXYGEN VACANCIES; TIO2; HETEROJUNCTIONS; NANOCRYSTALS; EVOLUTION; AG2CO3; OXIDES;
D O I
10.1016/j.ijhydene.2016.02.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effect of g-C3N4 loading on hydrogen treated TiO2 photocatalyst was studied towards the efficient photocatalytic and photoelectrochemical application. The tailored optical properties and enhanced photoinduced electron-hole separation in crystalline TiO2 (c-TiO2) was achieved by creating an amorphous shell (a-TiO2) around c-TiO2. The a-TiO2/c-TiO2 core shell particles were further modified by g-C3N4 coating, where amorphous a-TiO2 act as an interlayer between g-C3N4 and c-TiO2 nanocrystals. It was observed that photocatalytic degradation of Methylene Blue (MB) and water splitting to produce hydrogen was remarkably increased under visible-light upon coupling of a-TiO2/c-TiO2 core-shell particles with g-C3N4 and results in the best MB degradation performance of similar to 82% in 1 h and water splitting photocurrent density of 450 mu A/cm(2). The results from UV vis absorption study, Fourier transform infrared spectroscopy and electron microscopy, photoluminescence, photoelectrochemical measurements and electrochemical impedance spectroscopy suggest that the improved photoactivity is due to the increased light absorption in visible region and efficient charge separation as a result of effective interfacial electron transfer between g-C3N4, a-TiO2 and c-TiO2 in g-C3N4/a-TiO2/c-TiO2 composite. Copyright (C) 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5617 / 5628
页数:12
相关论文
共 40 条
[1]  
[Anonymous], 2008, HDB SURFACE COLLOID
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride [J].
Bojdys, Michael J. ;
Mueller, Jens-Oliver ;
Antonietti, Markus ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8177-8182
[4]   Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films [J].
Boonprakob, Natkritta ;
Wetchakun, Natda ;
Phanichphant, Sukon ;
Waxler, David ;
Sherrell, Peter ;
Nattestad, Andrew ;
Chen, Jun ;
Inceesungvorn, Burapat .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 417 :402-409
[5]   Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation [J].
Chai, Bo ;
Peng, Tianyou ;
Mao, Jing ;
Li, Kan ;
Zan, Ling .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (48) :16745-16752
[6]   Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation [J].
Chen, Xiaobo ;
Liu, Lei ;
Liu, Zhi ;
Marcus, Matthew A. ;
Wang, Wei-Cheng ;
Oyler, Nathan A. ;
Grass, Michael E. ;
Mao, Baohua ;
Glans, Per-Anders ;
Yu, Peter Y. ;
Guo, Jinghua ;
Mao, Samuel S. .
SCIENTIFIC REPORTS, 2013, 3
[7]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[8]   Construction of Heterostructured g-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation [J].
Chen, Yanfeng ;
Huang, Weixin ;
He, Donglin ;
Yue Situ ;
Huang, Hong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) :14405-14414
[9]   BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism [J].
Fu, Jie ;
Tian, Yanlong ;
Chang, Binbin ;
Xi, Fengna ;
Dong, Xiaoping .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (39) :21159-21166
[10]  
Fujishima A., 2000, J PHOTOCH PHOTOBIO C, V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]