Symmetry of standing waves for two kinds of fractional Hardy-Schrodinger equations
被引:2
|
作者:
Wang, Guotao
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, Jeddah 21589, Saudi ArabiaShanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
Wang, Guotao
[1
,2
]
Ren, Xueyan
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R ChinaShanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
Ren, Xueyan
[1
]
Zhang, Lihong
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R ChinaShanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
Zhang, Lihong
[1
]
Ahmad, Bashir
论文数: 0引用数: 0
h-index: 0
机构:
Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R ChinaShanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
Ahmad, Bashir
[1
]
机构:
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
Generalized Hartree-type fractional Hardy-Schrodinger equation;
Standing waves;
Radial symmetry;
Generalized Pekar-Choquard type fractional Hardy-Schrodinger equation;
Direct method of moving planes;
MAXIMUM-PRINCIPLES;
ORBITAL STABILITY;
ELLIPTIC PROBLEM;
MOVING PLANES;
LAPLACIAN;
INEQUALITY;
EXISTENCE;
D O I:
10.1016/j.aej.2021.02.023
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this paper, we consider two kinds of nonlinear Schrodinger equations with the fractional Laplacian and Hardy potential (lambda/vertical bar x vertical bar(s), 0 < lambda <= lambda(*), lambda(*) is a constant of the Hardy-Sobolev inequality), which represent the generalized form of Hartree and Pekar-Choquard type time dependent fractional Hardy-Schrodinger equations. Applying the direct method of moving planes, we obtain the radial symmetry and monotonicity of the standing waves for the given equations. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Liu, Shibo
Zhou, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Guizhou, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China