In vitro biocompatibility of electrospun poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats

被引:122
作者
Suwantong, Orawan
Waleetorncheepsawat, Suchada
Sanchavanakit, Neeracha
Pavasant, Prasit
Cheepsunthorn, Poonlarp
Bunaprasert, Tanom
Supaphol, Pitt
机构
[1] Chulalongkorn Univ, Technol Ctr Electrospun Fibers, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Fac Dent, Dept Anat, Bangkok 10330, Thailand
[4] Chulalongkorn Univ, Fac Med, Dept Anat, Bangkok 10330, Thailand
[5] Chulalongkorn Univ, Fac Med, Dept Otorhinolaryngol Head & Neck Surg, Bangkok 10330, Thailand
关键词
electrospinning; polyhydroxyalkanoates; biocompatibility; fibroblasts; Schwann cells;
D O I
10.1016/j.ijbiomac.2006.07.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 26 条
[1]   The effect of D,L-β-hydroxybutyric acid on cell death and proliferation in L929 cells [J].
Cheng, S ;
Chen, GQ ;
Leski, M ;
Zou, B ;
Wang, Y ;
Wu, Q .
BIOMATERIALS, 2006, 27 (20) :3758-3765
[2]   Fiect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [J].
Choi, JS ;
Lee, SW ;
Jeong, L ;
Bae, SH ;
Min, BC ;
Youk, JH ;
Park, WH .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2004, 34 (04) :249-256
[3]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[4]  
Gassner F, 1996, POLYM INT, V39, P215, DOI 10.1002/(SICI)1097-0126(199603)39:3<215::AID-PI497>3.0.CO
[5]  
2-0
[6]   Biodegradable electrospun fibers for drug delivery [J].
Jing, Z ;
Xu, XY ;
Chen, XS ;
Liang, QZ ;
Bian, XC ;
Yang, LX ;
Jing, XB .
JOURNAL OF CONTROLLED RELEASE, 2003, 92 (03) :227-231
[7]   Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend [J].
Kenawy, ER ;
Bowlin, GL ;
Mansfield, K ;
Layman, J ;
Simpson, DG ;
Sanders, EH ;
Wnek, GE .
JOURNAL OF CONTROLLED RELEASE, 2002, 81 (1-2) :57-64
[8]   Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning [J].
Lee, KH ;
Kim, HY ;
Khil, MS ;
Ra, YM ;
Lee, DR .
POLYMER, 2003, 44 (04) :1287-1294
[9]   Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications [J].
Li, MY ;
Guo, Y ;
Wei, Y ;
MacDiarmid, AG ;
Lelkes, PI .
BIOMATERIALS, 2006, 27 (13) :2705-2715
[10]   A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells [J].
Li, WJ ;
Tuli, R ;
Okafor, C ;
Derfoul, A ;
Danielson, KG ;
Hall, DJ ;
Tuan, RS .
BIOMATERIALS, 2005, 26 (06) :599-609