Car Popularity Prediction: A Machine Learning Approach

被引:0
作者
Mamgain, Sunakshi [1 ]
Kumar, Srikant [1 ]
Nayak, Kabita Manjari [1 ]
Vipsita, Swati [1 ]
机构
[1] IIIT Bhubaneswar, Dept Comp Sci, Bhubaneeswar, India
来源
2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA) | 2018年
关键词
Machine Learning; Regression; Classification; Supervised Machine Learning; Logistic Regression; KNN; Random Forest; CLASSIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today is a world of technology with a foreseen future of a machine reacting and thinking same as human. In this process of emerging Artificial Intelligence, Machine Learning, Knowledge Engineering, Deep Learning plays an essential role. In this paper, the problem is identified as regression or classification problem and here we have solved a real world problem of popularity prediction of a car company using machine learning approaches.
引用
收藏
页数:5
相关论文
共 20 条
  • [11] Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249
  • [12] Le Q.V., 2011, P 28 INT C INT C MAC
  • [13] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [14] Olsson F., 2009, LIT SURVEY ACTIVE MA
  • [15] A tutorial on support vector regression
    Smola, AJ
    Schölkopf, B
    [J]. STATISTICS AND COMPUTING, 2004, 14 (03) : 199 - 222
  • [16] Random forest: A classification and regression tool for compound classification and QSAR modeling
    Svetnik, V
    Liaw, A
    Tong, C
    Culberson, JC
    Sheridan, RP
    Feuston, BP
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (06): : 1947 - 1958
  • [17] Tao Ban, 2013, Neural Information Processing. 20th International Conference, ICONIP 2013. Proceedings: LNCS 8226, P601, DOI 10.1007/978-3-642-42054-2_75
  • [18] A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification
    Williams, Nigel
    Zander, Sebastian
    Armitage, Grenville
    [J]. ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2006, 36 (05) : 7 - 15
  • [19] Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    Willmott, CJ
    Matsuura, K
    [J]. CLIMATE RESEARCH, 2005, 30 (01) : 79 - 82
  • [20] Zhu X.J., 2005, Semi-supervised Learning Literature Survey