Wavelet regression estimation in nonparametric mixed effect models

被引:30
作者
Angelini, C
De Canditiis, D
Leblanc, F
机构
[1] Univ Naples Federico II, DMA, Naples, Italy
[2] Univ Grenoble 1, LMC, F-38041 Grenoble 9, France
关键词
wavelets; Besov spaces; regularization; BLUP estimators;
D O I
10.1016/S0047-259X(02)00055-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that a nonparametric estimator of a regression function, obtained as solution of a specific regularization problem is the best linear unbiased predictor in some nonparametric mixed effect model. Since this estimator is intractable from a numerical point of view, we propose a tight approximation of it easy and fast to implement. This second estimator achieves the usual optimal rate of convergence of the mean integrated squared error over a Sobolev class both for equispaced and nonequispaced design. Numerical experiments are presented both on simulated and ERP real data. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:267 / 291
页数:25
相关论文
共 35 条
[1]   Wavelet thresholding via a Bayesian approach [J].
Abramovich, F ;
Sapatinas, T ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :725-749
[2]  
AMATO U, 1998, REV ROUMAINE MATH PU, V43, P207
[3]  
AMATO U, 1997, REV ROUMAINE MATH PU, V42, P481
[4]  
ANGELINI C, 2001, 22601 I APPL MAT
[5]  
[Anonymous], 1990, SPLINE MODELS OBSERV
[6]  
[Anonymous], [No title captured]
[7]  
ANTONIADIS A, 1994, STAT SINICA, V4, P651
[8]  
Antoniadis A, 1996, SCAND J STAT, V23, P313
[9]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[10]  
CAROLL RJ, 2000, J STAT, V42, P205