Perturbation theory and optical soliton cooling with anti-cubic nonlinearity

被引:122
作者
Biswas, Anjan [1 ,6 ]
Zhou, Qin [3 ]
Ullah, Malik Zaka [2 ]
Asma, Mir [4 ]
Moshokoa, Seithuti P. [1 ]
Belic, Milivoj [5 ]
机构
[1] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[2] King Abdulaziz Univ, Operator Theory & Applicat Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[4] Univ Malaya, Inst Math Sci, Fac Sci, Kuala Lumpur 50601, Malaysia
[5] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
[6] Al Imam Mohammad Ibn Saud Islamic Univ, Dept Math & Stat, Coll Sci, Riyadh 13318, Saudi Arabia
来源
OPTIK | 2017年 / 142卷
基金
美国国家科学基金会;
关键词
Solitons; Perturbation; Adiabaticity; SCHRODINGER-EQUATION;
D O I
10.1016/j.ijleo.2017.05.060
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Soliton perturbation theory is applied to obtain the adiabatic variation of its parameters and slow change in velocity. The dynamical system leads to a stable fixed point to which the soliton amplitude and frequency gets locked into for a stable propagation down the fibers with anti-cubic nonlinearity. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:73 / 76
页数:4
相关论文
共 10 条
[1]   Hamiltonian-versus-energy diagrams in soliton theory [J].
Akhmediev, N ;
Ankiewicz, A ;
Grimshaw, R .
PHYSICAL REVIEW E, 1999, 59 (05) :6088-6096
[2]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[3]   Optical solitons with anti-cubic nonlinearity by extended trial equation method [J].
Ekici, Mehmet ;
Mirzazadeh, Mohammad ;
Sonmezoglu, Abdullah ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Triki, Houria ;
Moshokoa, Seithuti P. ;
Biswas, Anjan .
OPTIK, 2017, 136 :368-373
[4]   Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity [J].
Fedele, R ;
Schamel, H ;
Karpman, VI ;
Shukla, PK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (04) :1169-1173
[5]   Optical soliton perturbation with log law nonlinearity [J].
Girgis, Laila ;
Milovic, Daniela ;
Hayat, Tasawar ;
Aldossary, Omar M. ;
Biswas, Anjan .
OPTICA APPLICATA, 2012, 42 (03) :447-454
[6]  
Hasegawa A., 1995, Solitons in Optical Communications
[7]   Optical solitons with anti-cubic nonlinearity using three integration schemes [J].
Jawad, Anwar Ja'afar Mohamad ;
Mirzazadeh, Mohammad ;
Zhou, Qin ;
Biswas, Anjan .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 :1-10
[8]   Optical soliton perturbation in a non-Kerr law media [J].
Kohl, Russell ;
Biswas, Anjan ;
Milovic, Daniela ;
Zerrad, Essaid .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (04) :647-662
[9]   New types of solitary wave solutions for the higher order nonlinear Schrodinger equation [J].
Li, ZH ;
Li, L ;
Tian, HP ;
Zhou, GS .
PHYSICAL REVIEW LETTERS, 2000, 84 (18) :4096-4099
[10]   Optical solitons and conservation laws with anti-cubic nonlinearity [J].
Triki, Houria ;
Kara, Abdul H. ;
Biswas, Anjan ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2016, 127 (24) :12056-12062