Influence of sulfonyl fluoride monomers on the mechanism of emulsion copolymerization with the preparation of proton-conducting membrane precursors

被引:10
作者
Primachenko, Oleg N. [1 ]
Odinokov, Alexey S. [1 ,2 ]
Marinenko, Elena A. [1 ]
Kulvelis, Yuri, V [3 ]
Barabanov, Valerij G. [2 ]
Kononova, Svetlana, V [1 ]
机构
[1] Russian Acad Sci, Inst Macromol Cpds, Bolshoy Prospect VO 31, St Petersburg, Russia
[2] Russian Sci Ctr Appl Chem, 26A Krylenko Ul, St Petersburg 193232, Russia
[3] NRC Kurchatov Inst, BP Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Russia
基金
俄罗斯基础研究基金会;
关键词
Aqueous emulsion copolymerization; Sulfonyl fluoride monomers; Tetrafluoroethylene; Nafion; Aquivion; Proton exchange membranes; FUEL-CELL; EXCHANGE MEMBRANES; PERFLUORINATED MEMBRANES; CHAIN; WATER; TETRAFLUOROETHYLENE; PERFORMANCE; NAFION;
D O I
10.1016/j.jfluchem.2021.109736
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The advantages of aqueous emulsion method are demonstrated for producing copolymers as a material for Nafion (R)- and Aquivion (R)-type proton exchange membranes. The features of copolymerization of tetrafluoro-ethylene (TFE) with sulfonyl fluoride monomers in microdroplets of monomer in emulsion are discussed. For the first time, the copolymerization constants were found for TFE reaction with perfluoro (3,6-dioxa-4-methyl-7-octene) sulfonyl fluoride (FS-141) or perfluoro-3-oxapentenesulfonyl fluoride (FS-81) monomers in the aqueous emulsion medium. The producing of long- and short-side chain copolymers realizes by different mechanisms, depending on the way of copolymer accumulation in the system - either by persisting in monomer microdroplets or by segregation in latex particles. Aqueous emulsion copolymerization allows regulate the copolymer composition, keeping it constant till high degrees of monomer conversion, thus obtaining the membrane copolymer precursors with improved properties.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Determination of the content of sulfonyl fluoride groups in the copolymer of tetrafluoroethylene with perfluoro(3,6-dioxa-4-methyl-7-octene)sulfonyl fluoride [J].
Abramov, S. P. ;
Trofimova, A. A. ;
Barabanov, V. G. .
RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2009, 82 (12) :2187-2191
[2]  
Abramov S.P, 2011, FLUOR NOTES, V4, P7
[3]  
Abusleme J., 2002, Ausimont S.p.A., European Patent Appl., Patent No. [1,167,400 A1, 1167400]
[4]  
Ausimont S.p.A, 2002, European Patent Appl, Patent No. [1, 172,382 A2, 1172382]
[5]   Nafion® perfluorinated membranes in fuel cells [J].
Banerjee, S ;
Curtin, DE .
JOURNAL OF FLUORINE CHEMISTRY, 2004, 125 (08) :1211-1216
[6]   In-Depth Profiling of Degradation Processes in a Fuel Cell: 2D Spectral-Spatial FTIR Spectra of Nafion Membranes [J].
Danilczuk, Marek ;
Lancuki, Lukasz ;
Schlick, Shulamith ;
Hamrock, Steven J. ;
Haugen, Gregory M. .
ACS MACRO LETTERS, 2012, 1 (02) :280-285
[7]   Ranking the Stability of Perfluorinated Membranes Used in Fuel Cells to Attack by Hydroxyl Radicals and the Effect of Ce(III): A Competitive Kinetics Approach Based on Spin Trapping ESR [J].
Danilczuk, Marek ;
Perkowski, Andrew J. ;
Schlick, Shulamith .
MACROMOLECULES, 2010, 43 (07) :3352-3358
[8]  
Emeljanov G.A., 2015, **NON-TRADITIONAL**
[9]   Proton exchange membranes based on the short-side-chain perfluorinated ionomer [J].
Ghielmi, A ;
Vaccarono, P ;
Troglia, C ;
Arcella, V .
JOURNAL OF POWER SOURCES, 2005, 145 (02) :108-115
[10]  
Good LE, 2010, US PATENT