MAP kinases and the control of nuclear events

被引:345
作者
Turjanski, A. G. [1 ]
Vaque, J. P. [1 ]
Gutkind, J. S. [1 ]
机构
[1] Natl Inst Dent & Craniofacial Res, Oral & Pharyngeal Canc Branch, NIH, Bethesda, MD USA
基金
美国国家卫生研究院;
关键词
signal transduction; Ras GTPases; Rho GTPases; chromatin remodeling; transcription factors; growth factors;
D O I
10.1038/sj.onc.1210415
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitogen-activated protein kinases (MAPKs) are a family of serine/threonine kinases that play an essential role in signal transduction by modulating gene transcription in the nucleus in response to changes in the cellular environment. They include the extracellular signal-regulated protein kinases (ERK1 and ERK2); c-Jun N-terminal kinases (JNK1, JNK2, JNK3); p38s (p38a, p38b, p38c, p38d) an d ERK5. The molecular events in which MAPKs function can be separated in discrete and yet interrelated steps: activation of the MAPK by their upstream kinases, changes in the subcellular localization of MAPKs, and recognition, binding and phosphorylation of MAPK downstream targets. The resulting pattern of gene expression will ultimately depend on the integration of the combinatorial signals provided by the temporal activation of each group of MAPKs. This review will focus on how the specificity of signal transmission by MAPKs is achieved by scaffolding molecules and by the presence of structural motifs in MAPKs that are dynamically regulated by phosphorylation and protein-protein interactions. We discuss also how MAPKs recognize and phosphorylate their target nuclear proteins, including transcription factors, co-activators and repressors and chromatin-remodeling molecules, thereby affecting an intricate balance of nuclear regulatory molecules that ultimately control gene expression in response to environmental cues.
引用
收藏
页码:3240 / 3253
页数:14
相关论文
共 159 条
[1]   Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
EMBO JOURNAL, 1999, 18 (19) :5347-5358
[2]   Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development [J].
Adams, RH ;
Porras, A ;
Alonso, G ;
Jones, M ;
Vintersten, K ;
Panelli, S ;
Valladares, A ;
Perez, L ;
Klein, R ;
Nebreda, AR .
MOLECULAR CELL, 2000, 6 (01) :109-116
[3]   THE JUN PROTO-ONCOGENE IS POSITIVELY AUTOREGULATED BY ITS PRODUCT, JUN/AP-1 [J].
ANGEL, P ;
HATTORI, K ;
SMEAL, T ;
KARIN, M .
CELL, 1988, 55 (05) :875-885
[4]   THE ROLE OF JUN, FOS AND THE AP-1 COMPLEX IN CELL-PROLIFERATION AND TRANSFORMATION [J].
ANGEL, P ;
KARIN, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1072 (2-3) :129-157
[5]   Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2 [J].
Ben-Levy, R ;
Hooper, S ;
Wilson, R ;
Paterson, HF ;
Marshall, CJ .
CURRENT BIOLOGY, 1998, 8 (19) :1049-1057
[6]   Phosphorylation of MafA is essential for its transcriptional and biological properties [J].
Benkhelifa, S ;
Provot, S ;
Nabais, E ;
Eychène, A ;
Calothy, G ;
Felder-Schmittbuhl, MP .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (14) :4441-4452
[7]   The nucleosome: a little variation goes a long way [J].
Bernstein, Emily ;
Hake, Sandra B. .
BIOCHEMISTRY AND CELL BIOLOGY, 2006, 84 (04) :505-517
[8]   Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions [J].
Biondi, RM ;
Nebreda, AR .
BIOCHEMICAL JOURNAL, 2003, 372 :1-13
[9]   The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing [J].
Blank, TA ;
Becker, PB .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 260 (01) :1-8
[10]   p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts [J].
Briata, P ;
Forcales, SV ;
Ponassi, M ;
Corte, G ;
Chen, CY ;
Karin, M ;
Puri, PL ;
Gherzi, R .
MOLECULAR CELL, 2005, 20 (06) :891-903