Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis

被引:43
作者
Yamada, Ryosuke [1 ]
Kashihara, Tomomi [1 ]
Ogino, Hiroyasu [1 ]
机构
[1] Osaka Prefecture Univ, Dept Chem Engn, Naka Ku, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
关键词
Oleaginous yeast; Biodiesel fuel; UV mutagenesis; Rhodosporidium toruloides; Lipid; BIODIESEL PRODUCTION; BIOSYNTHESIS; OIL;
D O I
10.1007/s11274-017-2269-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H2O2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H2O2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination. [GRAPHICS] .
引用
收藏
页数:9
相关论文
共 26 条
[1]   Oily yeasts as oleaginous cell factories [J].
Ageitos, Jose Manuel ;
Vallejo, Juan Andres ;
Veiga-Crespo, Patricia ;
Villa, Tomas G. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 90 (04) :1219-1227
[2]  
AGUDO LD, 1992, APPL MICROBIOL BIOT, V37, P647, DOI 10.1007/BF00240742
[3]   Biotechnological processes for biodiesel production using alternative oils [J].
Azocar, Laura ;
Ciudad, Gustavo ;
Heipieper, Hermann J. ;
Navia, Rodrigo .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 88 (03) :621-636
[4]   Biodiesel production from various feedstocks and their effects on the fuel properties [J].
Canakci, M. ;
Sanli, H. .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2008, 35 (05) :431-441
[5]   Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock [J].
Gui, M. M. ;
Lee, K. T. ;
Bhatia, S. .
ENERGY, 2008, 33 (11) :1646-1653
[6]   Review of biodiesel composition, properties, and specifications [J].
Hoekman, S. Kent ;
Broch, Amber ;
Robbins, Curtis ;
Ceniceros, Eric ;
Natarajan, Mani .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (01) :143-169
[7]   Preparation of fatty acid methyl esters for gas-liquid chromatography [J].
Ichihara, Ken'ichi ;
Fukubayashi, Yumeto .
JOURNAL OF LIPID RESEARCH, 2010, 51 (03) :635-640
[8]  
Jamieson DJ, 1998, YEAST, V14, P1511, DOI 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO
[9]  
2-S
[10]  
KNIGHT JA, 1972, CLIN CHEM, V18, P199