Explosion venting of hydrogen-air mixtures from a duct to a vented vessel

被引:30
|
作者
Li, Hongwei [1 ]
Guo, Jin [2 ,3 ]
Yang, Fuqiang [2 ]
Wang, Changjian [4 ,5 ]
Zhang, Jiaqing [6 ]
Lu, Shouxiang [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Chem Engn, Huainan 232001, Anhui, Peoples R China
[2] Fuzhou Univ, Coll Environm & Resources, Fuzhou 350116, Fujian, Peoples R China
[3] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230027, Anhui, Peoples R China
[4] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Anhui, Peoples R China
[5] Anhuis Int Joint Res Ctr Hydrogen Safety, Hefei 230009, Anhui, Peoples R China
[6] Anhui Elect Power Res Inst, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Explosion venting; Overpressure; Flame; Duct; Obstacle; LARGE-SCALE; GAS EXPLOSION; EQUIVALENCE RATIO; DUST EXPLOSIONS; DEFLAGRATIONS; OVERPRESSURES; POSITION; VOLUMES; DETONATION; COMBUSTION;
D O I
10.1016/j.ijhydene.2018.05.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experiments were conducted on the vented explosion of hydrogen-air mixtures from a 150-cm-long duct to a cylindrical vessel with a vent at the center of its side wall to investigate the effects of vent burst pressure and an obstacle in duct on the process of explosion venting. Turbulent pressure oscillation owing to a pressure wave moving back and forth in a duct and vessel was observed for unvented explosions. For explosion venting from duct to vessel, flame acceleration in duct much increases the explosion overpressure in vessel. The maximum explosion in duct is always higher than that in vessel, and both of them increase with an increase in the vent cover thickness. An obstacle installed in duct significantly affected the explosion overpressure, which first increased and then decreased with an increase in the blockage ratio. Three pressure peaks were distinguished in the external pressure-time histories, which were resulted form different pressure waves formed outside the vessel. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11307 / 11313
页数:7
相关论文
共 50 条
  • [31] Dynamic hazard evaluation of explosion severity for premixed hydrogen-air mixtures in a spherical pressure vessel
    Zhang, Yun
    Cao, Weiguo
    Shu, Chi-Min
    Zhao, Mengke
    Yu, Cunjuan
    Xie, Zhaobian
    Liang, Jinhu
    Song, Zhiqiang
    Cao, Xiong
    FUEL, 2020, 261
  • [32] Experimental study on the effects of ignition location and vent burst pressure on vented hydrogen-air deflagrations in a cubic vessel
    Rui, Shengchao
    Wang, Changjian
    Luo, Xinjiao
    Li, Quan
    Zhang, Haoran
    FUEL, 2020, 278
  • [33] Experimental and numerical study of the influence of vent burst pressure on venting characteristic of hydrogen-air explosion
    Cao, Yong
    Wang, Ziyang
    Zeng, Mingyu
    Chen, Jianpeng
    Li, Bin
    Xie, Lifeng
    NUCLEAR ENGINEERING AND DESIGN, 2022, 394
  • [34] Simulation of turbulent explosion of hydrogen-air mixtures
    Ahmed, I.
    Swaminathan, N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9562 - 9572
  • [35] Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container
    Cao, Weiguo
    Li, Wenjuan
    Yu, Shuo
    Zhang, Yun
    Shu, Chi-Min
    Liu, Yifei
    Luo, Jingwen
    Bu, Lingtao
    Tan, Yingxin
    FUEL, 2021, 290
  • [36] Effect of ignition position on vented hydrogen-air explosions
    Guo, Jin
    Sun, Xuxu
    Rui, Shengchao
    Cao, Yong
    Hu, Kunlun
    Wang, Changjian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (45) : 15780 - 15788
  • [37] Experimental Studies on the Explosion Behaviors of Premixed Hydrogen-Air Mixtures in a Narrow Channel
    Zhang, Siyu
    Wen, Xiaoping
    Zhang, Sumei
    Ji, Wentao
    Guo, Zhidong
    Zheng, Hongxiang
    ACS OMEGA, 2022, : 26767 - 26776
  • [38] Visualization of the external flow field during a vented explosion for hydrogen-air mixtures: Effects of hydrogen concentrations and vent areas
    Song, Xianzhao
    Zhang, Jing
    Liu, Quan
    Xu, Qiming
    Chen, Jiu
    Zhang, Dan
    Xie, Lifeng
    Li, Bin
    FUEL, 2022, 327
  • [39] The effect of vent burst pressure on a vented hydrogen-air deflagration in a 1 m3 vessel
    Rui, Shengchao
    Guo, Jin
    Li, Gang
    Wang, Changjian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (45) : 21169 - 21176
  • [40] Experimental study of the coupling effects of ignition position and nitrogen inerting on vented hydrogen-air deflagrations
    Zhang, Kai
    Wang, Jingui
    Guo, Jin
    Du, Saifeng
    Chen, Hao
    Wang, Hongyan
    Li, Yiming
    Liu, Rui
    Yan, Yezhe
    Gao, Shulei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1288 - 1295