Monotone Paths in Geometric Triangulations

被引:0
作者
Dumitrescu, Adrian [1 ]
Mandal, Ritankar [1 ]
Toth, Csaba D. [2 ,3 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Milwaukee, WI 53706 USA
[2] Calif State Univ Northridge, Dept Math, Los Angeles, CA USA
[3] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
基金
美国国家科学基金会;
关键词
Monotone path; Triangulation; Counting algorithm; SIMPLEX-ALGORITHM; HIRSCH CONJECTURE; RANDOM-EDGE; GRAPHS; DIAMETER; BOUNDS; MATCHINGS; POLYHEDRA; CYCLES;
D O I
10.1007/s00224-018-9855-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
(I) We prove that the (maximum) number of monotone paths in a geometric triangulation of n points in the plane is O(1.7864 (n) ). This improves an earlier upper bound of O(1.8393 (n) ); the current best lower bound is Omega(1.7003 (n) ). (II) Given a planar geometric graph G with n vertices, we show that the number of monotone paths in G can be computed in O(n (2)) time.
引用
收藏
页码:1490 / 1524
页数:35
相关论文
共 29 条
[1]  
Adler I., 2014, LNCS, V8494
[2]  
Ajtai M., 1982, THEORY PRACTICE COMB, P9, DOI [10.1016/S0304-0208(08), DOI 10.1016/S0304-0208(08), DOI 10.1016/S0304-0208(08)73484-4]
[3]  
Buchin K., 2007, LNCS, V4598
[4]  
De Berg M., 2008, Computational Geometry: Algorithms and Applications, V17
[5]  
Dumitrescu Adrian, 2012, SIGACT News, V43, P90
[6]  
Dumitrescu A., 2013, DISCRETE GEOMETRY OP, V69 of, P79
[7]   Convex Polygons in Geometric Triangulations [J].
Dumitrescu, Adrian ;
Toth, Csaba D. .
COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (05) :641-659
[8]   Counting Carambolas [J].
Dumitrescu, Adrian ;
Loffler, Maarten ;
Schulz, Andre ;
Toth, Csaba D. .
GRAPHS AND COMBINATORICS, 2016, 32 (03) :923-942
[9]   BOUNDS ON THE MAXIMUM MULTIPLICITY OF SOME COMMON GEOMETRIC GRAPHS [J].
Dumitrescu, Adrian ;
Schulz, Andre ;
Sheffer, Adam ;
Toth, Csaba D. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) :802-826
[10]   Two new bounds for the random-edge simplex-algorithm [J].
Gaertner, Bernd ;
Kaibel, Volker .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :178-190