Non-topological solutions in the generalized self-dual Chern-Simons-Higgs theory

被引:8
作者
Chae, D [1 ]
Imanuvilov, OY
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
D O I
10.1007/s005260100141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a non-topological multivortex solution of a generalized version of the relativistic self-dual Chern-Simons-Higgs system in R-2 that makes the energy functional finite. Our method of proof is an extension of the previous argument used by the authors to prove the existence of general type of non-topological multivortex solutions of the relativistic Chern-Simons-Higgs system, using an implicit function theorem argument with features similar to the Liapunov-Schmidt decomposition.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 18 条
[1]  
Baraket S, 1998, CALC VAR PARTIAL DIF, V6, P1
[2]   GENERALIZED SELF-DUAL CHERN-SIMONS VORTICES [J].
BURZLAFF, J ;
CHAKRABARTI, A ;
TCHRAKIAN, DH .
PHYSICS LETTERS B, 1992, 293 (1-2) :127-131
[3]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[4]   The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory [J].
Chae, D ;
Imanuvilov, OY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) :119-142
[5]  
DING W, 1998, CALC VAR PDE, V7, P1
[6]  
GILBAG D, 1982, ELLIPTIC PARTIAL DIF
[7]   MULTIVORTEX SOLUTIONS OF THE ABELIAN CHERN-SIMONS-HIGGS THEORY [J].
HONG, JY ;
KIM, YB ;
PAC, PY .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2230-2233
[8]   SOLITON-SOLUTIONS TO THE GAUGED NONLINEAR SCHRODINGER-EQUATION ON THE PLANE [J].
JACKIW, R ;
PI, SY .
PHYSICAL REVIEW LETTERS, 1990, 64 (25) :2969-2972
[9]  
JAFFE A, 1980, VORTICES MONOPOLES S
[10]  
LANG S, GTM SERIES