DERIVATIONS OF THE TRIGONOMETRIC BCn SUTHERLAND MODEL BY QUANTUM HAMILTONIAN REDUCTION

被引:9
作者
Feher, L. [1 ,2 ]
Pusztai, B. G. [3 ]
机构
[1] MTA KFKI RMKI, Dept Theoret Phys, H-1525 Budapest, Hungary
[2] Univ Szeged, Dept Theoret Phys, H-6720 Szeged, Hungary
[3] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
匈牙利科学研究基金会;
关键词
Integrable many-body systems; quantum Hamiltonian reduction; polar action; LIE-GROUPS; ROOT SYSTEMS; HYPERGEOMETRIC-FUNCTIONS; SPHERICAL-FUNCTIONS; CALOGERO TYPE; INVOLUTIONS; POLAR ACTIONS; PARTICLES; ALGEBRAS;
D O I
10.1142/S0129055X10004065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The BCn Sutherland Hamiltonian with coupling constants parametrized by three arbitrary integers is derived by reductions of the Laplace operator of the group U(N). The reductions are obtained by applying the Laplace operator on spaces of certain vector valued functions equivariant under suitable symmetric subgroups of U(N) x U(N). Three different reduction schemes are considered, the simplest one being the compact real form of the reduction of the Laplacian of GL(2n, C) to the complex BCn Sutherland Hamiltonian previously studied by Oblomkov.
引用
收藏
页码:699 / 732
页数:34
相关论文
共 28 条
[1]  
BERENSHTEIN AD, 1990, FUNCT ANAL APPL+, V24, P259
[2]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416
[3]  
Cherednik I., 2005, London Math. Soc. Lecture Note Series, V319
[4]  
Etingof P., 2007, CALOGERO MOSER SYSTE
[5]   SPHERICAL-FUNCTIONS ON AFFINE LIE-GROUPS [J].
ETINGOF, PI ;
FRENKEL, IB ;
KIRILLOV, AA .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (01) :59-90
[6]   Hamiltonian reductions of free particles under polar actions of compact Lie groups [J].
Feher, L. ;
Pusztai, B. G. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 155 (01) :646-658
[7]   A class of Calogero type reductions of free motion on a simple Lie group [J].
Feher, L. ;
Pusztai, B. G. .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 79 (03) :263-277
[8]  
Gorbatsevich V.V., 1997, FDN LIE THEORY LIE T
[9]  
Hashizume M., 1984, Adv. Stud. Pure Math, V4, P291
[10]  
HECKMAN G, 1994, PERSPECTIVES MATH, V16, P1