On tight 9-cycle decompositions of complete 3-uniform hypergraphs

被引:0
|
作者
Bunge, Ryan C. [1 ]
Darrow, Brian D., Jr. [2 ]
El-Zanati, Saad, I [1 ]
Hadaway, Kimberly P. [3 ]
Pryor, Megan K. [4 ]
Romer, Alexander J. [5 ]
Squires, Alexandra [6 ]
Stover, Anna C. [7 ]
机构
[1] Illinois State Univ, Normal, IL 61761 USA
[2] Columbia Univ, New York, NY USA
[3] Williams Coll, Williamstown, MA 01267 USA
[4] North Carolina State Univ, Raleigh, NC USA
[5] Millikin Univ, Decatur, IL USA
[6] Lee Univ, Cleveland, TN USA
[7] Grand Valley State Univ, Allendale, MI 49401 USA
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2021年 / 80卷
基金
美国国家科学基金会;
关键词
CYCLE DECOMPOSITIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complete 3-uniform hypergraph of order v, denoted by K-v((3)), has a set V of size v as its vertex set and the set of all 3-element subsets of V as its edge set. A 3-uniform tight 9-cycle has vertex set {v(1), v(2), v(3), v(4), v(5), v(6), v(7), v(8), v(9)} and edge set { {v(1), v(2), v(3)}, {v(2), v(3), v(4)}, {v(3), v(4), v(5)}, {v(4), v(5), v(6)}, {v(5), v(6), v(7)}, {v(6), v(7), v(8)}, {v(7), v(8), v(9)}, {v(8), v(9), v(1)}, {v(9), v(1), v(2)}}. We show there exists a tight 9-cycle decomposition of K-v((3)) if and only if v equivalent to 1 or 2 (mod 27).
引用
收藏
页码:233 / 240
页数:8
相关论文
共 2 条
  • [1] On tight 6-cycle decompositions of complete 3-uniform hypergraphs
    Akin, Matthew
    Bunge, Ryan C.
    El-Zanati, Saad, I
    Hamilton, Joshua
    Kolle, Brittany
    Lehmann, Sabrina
    Neiburger, Levi
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [2] Spectrum of 3-uniform 6-and 9-cycle systems over Kv(3) - I
    Keszler, Anita
    Tuza, Zsolt
    DISCRETE MATHEMATICS, 2024, 347 (03)