Applications of single-cell and bulk RNA sequencing in onco-immunology

被引:92
作者
Kuksin, Maria [1 ,2 ]
Morel, Daphne [2 ,3 ,4 ]
Aglave, Marine [5 ]
Danlos, Francois-Xavier [6 ]
Marabelle, Aurelien [2 ,6 ]
Zinovyev, Andrei [7 ,8 ,9 ,10 ]
Gautheret, Daniel [11 ,12 ,13 ]
Verlingue, Loic [2 ,4 ,7 ,13 ]
机构
[1] ENS Lyon, 15 Parvis Rene Descartes, F-69007 Lyon, France
[2] Dept Innovat Therapeut & Essais Precoces DITEP, Gustave Roussy Canc Campus, F-94800 Villejuif, France
[3] Gustave Roussy, Dept Radiotherapie, Gustave Roussy Canc Campus, F-94800 Villejuif, France
[4] Gustave Roussy, INSERM, Mol Radiotherapy & Therapeut Innovat, UMR1030, 114 Rue Edouard Vaillant, F-94800 Villejuif, France
[5] CNRS, INSERM, UMS 3655, US23, Gustave Roussy Canc Campus, F-3655 Villejuif, France
[6] Univ Paris Saclay, INSERM, U1015, Gustave Roussy, Paris, France
[7] PSL Res Univ, Inst Curie, F-75005 Paris, France
[8] INSERM, U900, F-75005 Paris, France
[9] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-75006 Paris, France
[10] Lobachevsky Univ, Lab Adv Methods High Dimens Data Anal, Nizhnii Novgorod 603000, Russia
[11] Univ Paris Saclay, Inst Integrat Biol Cell, CNRS, CEA,UMR 9198, Gif Sur Yvette, France
[12] Gustave Roussy, IHU PRISM, Gustave Roussy Canc Campus, F-94800 Villejuif, France
[13] Univ Paris Saclay, Paris, France
关键词
Immunotherapy; Single-cell RNA-seq; Bulk RNA-seq; Tumour microenvironment; Cancer; Precision medicine; GENE SET ENRICHMENT; INFILTRATING IMMUNE; CTLA-4; BLOCKADE; LUNG-CANCER; EXPRESSION; IMMUNOTHERAPY; PEMBROLIZUMAB; DECONVOLUTION; SENSITIVITY; INFERENCE;
D O I
10.1016/j.ejca.2021.03.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The rising interest for precise characterization of the tumour immune contexture has recently brought forward the high potential of RNA sequencing (RNA-seq) in identifying molecular mechanisms engaged in the response to immunotherapy. In this review, we provide an overview of the major principles of single-cell and conventional (bulk) RNA-seq applied to onco-immunology. We describe standard preprocessing and statistical analyses of data obtained from such techniques and highlight some computational challenges relative to the sequencing of individual cells. We notably provide examples of gene expression analyses such as differential expression analysis, dimensionality reduction, clustering and enrichment analysis. Additionally, we used public data sets to exemplify how deconvolution algorithms can identify and quantify multiple immune subpopulations from either bulk or single-cell RNAseq. We give examples of machine and deep learning models used to predict patient outcomes and treatment effect from high-dimensional data. Finally, we balance the strengths and weaknesses of single-cell and bulk RNA-seq regarding their applications in the clinic. & ordf; 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:193 / 210
页数:18
相关论文
共 148 条
[71]   svaseq: removing batch effects and other unwanted noise from sequencing data [J].
Leek, Jeffrey T. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (21) :e161
[72]   First FDA Approval Agnostic of Cancer Site - When a Biomarker Defines the Indication [J].
Lemery, Steven ;
Keegan, Patricia ;
Pazdur, Richard .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (15) :1409-1412
[73]   Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis [J].
Levine, Jacob H. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad D. ;
Tadmor, Michelle D. ;
Litvin, Oren ;
Fienberg, Harris G. ;
Jager, Astraea ;
Zunder, Eli R. ;
Finck, Rachel ;
Gedman, Amanda L. ;
Radtke, Ina ;
Downing, James R. ;
Pe'er, Dana ;
Nolan, Garry P. .
CELL, 2015, 162 (01) :184-197
[74]  
Li T, 2020, NUCLEIC ACIDS RES, V48, pW509
[75]   Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension [J].
Liu, Xiaoxuan ;
Rivera, Samantha Cruz ;
Moher, David ;
Calvert, Melanie J. ;
Denniston, Alastair K. .
NATURE MEDICINE, 2020, 26 (09) :1364-1374
[76]   Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J].
Love, Michael I. ;
Huber, Wolfgang ;
Anders, Simon .
GENOME BIOLOGY, 2014, 15 (12)
[77]   GAGE: generally applicable gene set enrichment for pathway analysis [J].
Luo, Weijun ;
Friedman, Michael S. ;
Shedden, Kerby ;
Hankenson, Kurt D. ;
Woolf, Peter J. .
BMC BIOINFORMATICS, 2009, 10
[78]   Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing [J].
Mai, Zhibiao ;
Xiao, Chuanle ;
Jin, Jingjie ;
Zhang, Gong .
SCIENTIFIC REPORTS, 2017, 7
[79]   Cancer Immunotherapy and Breaking Immune Tolerance: New Approaches to an Old Challenge [J].
Makkouk, Amani ;
Weiner, George J. .
CANCER RESEARCH, 2015, 75 (01) :5-10
[80]   Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders [J].
Manica, Matteo ;
Oskooei, Ali ;
Born, Jannis ;
Subramanian, Vigneshwari ;
Saez-Rodriguez, Julio ;
Martinez, Maria Rodriguez .
MOLECULAR PHARMACEUTICS, 2019, 16 (12) :4797-4806