Asymmetric Spreading of a Drop upon Impact onto a Surface

被引:46
作者
Almohammadi, H. [1 ]
Amirfazli, A. [1 ]
机构
[1] York Univ, Dept Mech Engn, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LIQUID DROPLETS; COLLISIONS; DYNAMICS; OUTCOMES;
D O I
10.1021/acs.langmuir.7b00704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Study of the spreading of an impacting drop onto a surface has gained importance recently due to applications in printing, coating, and icing. Limited studies are conducted to understand asymmetric spreading of a drop seen upon drop impact onto a moving surface; there is no relation to describe such spreading. Here, we experimentally studied the spreading of a drop over a moving surface; such study also provides,insights for systems where a drop impacts at an angle relative to a surface, i.e., drop has both normal and tangential velocities relative to the surface. We developed a model that for the first time allows prediction of time evolution for the asymmetric shape of the lamella during spreading. The developed model is demonstrated to be valid for a range of liquids and surface wettabilities as well as drop and surface velocities, making this study a comprehensive examination of the topic. We also found out how surface wettability can affect the recoil of the drop after spreading and explained the role of contact angle hysteresis and receding contact angle in delaying the recoil process.
引用
收藏
页码:5957 / 5964
页数:8
相关论文
共 50 条
[1]   Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability [J].
Aboud, Damon G. K. ;
Kietzig, Anne-Marie .
LANGMUIR, 2015, 31 (36) :10100-10111
[2]   Understanding the drop impact on moving hydrophilic and hydrophobic surfaces [J].
Almohammadi, H. ;
Amirfazli, A. .
SOFT MATTER, 2017, 13 (10) :2040-2053
[3]   Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps [J].
Antonini, C. ;
Villa, F. ;
Marengo, M. .
EXPERIMENTS IN FLUIDS, 2014, 55 (04)
[4]   Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems [J].
Antonini, C. ;
Innocenti, M. ;
Horn, T. ;
Marengo, M. ;
Amirfazli, A. .
COLD REGIONS SCIENCE AND TECHNOLOGY, 2011, 67 (1-2) :58-67
[5]   Drop impact and wettability: From hydrophilic to superhydrophobic surfaces [J].
Antonini, Carlo ;
Amirfazli, Alidad ;
Marengo, Marco .
PHYSICS OF FLUIDS, 2012, 24 (10)
[6]   An energy balance approach of the dynamics of drop impact on a solid surface [J].
Attane, P. ;
Girard, F. ;
Morin, V. .
PHYSICS OF FLUIDS, 2007, 19 (01)
[7]   Retraction dynamics of aqueous drops upon impact on non-wetting surfaces [J].
Bartolo, D ;
Josserand, C ;
Bonn, D .
JOURNAL OF FLUID MECHANICS, 2005, 545 :329-338
[8]   IMPACT OF A LIQUID-DROP AGAINST A FLAT SURFACE [J].
BECHTEL, SE ;
BOGY, DB ;
TALKE, FE .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1981, 25 (06) :963-971
[9]   Controlling droplet deposition with polymer additives [J].
Bergeron, V ;
Bonn, D ;
Martin, JY ;
Vovelle, L .
NATURE, 2000, 405 (6788) :772-775
[10]   Reducing the contact time of a bouncing drop [J].
Bird, James C. ;
Dhiman, Rajeev ;
Kwon, Hyuk-Min ;
Varanasi, Kripa K. .
NATURE, 2013, 503 (7476) :385-+