Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model

被引:9
作者
Sampid, Marius Galabe [1 ]
Hasim, Haslifah M. [1 ]
Dai, Hongsheng [1 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester, Essex, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
关键词
INFERENCE; VOLATILITY; TAIL;
D O I
10.1371/journal.pone.0198753
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
引用
收藏
页数:33
相关论文
共 74 条
[1]  
[Anonymous], BLACK SWAN IMPACT HI
[2]  
[Anonymous], DEPENDENCE STRUCTURE
[3]  
[Anonymous], 2001, MODELLING DEPENDENCE
[4]  
[Anonymous], 2002, ADV MARKOV SWITCHING
[5]  
[Anonymous], 2013, VALUE RISK ESTIMATIO
[6]  
[Anonymous], 2008, MARKET RISK ANAL PRA
[7]  
[Anonymous], 2005, ANAL FINANCIAL TIME, DOI DOI 10.1002/0471746193
[8]  
[Anonymous], 2003, Journal of Risk, DOI DOI 10.21314/JOR.2003.089
[9]  
[Anonymous], 2008, PILLAR 2 NEW BASEL A
[10]  
[Anonymous], MODELLING EXTREME VA