Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model

被引:9
作者
Sampid, Marius Galabe [1 ]
Hasim, Haslifah M. [1 ]
Dai, Hongsheng [1 ]
机构
[1] Univ Essex, Dept Math Sci, Colchester, Essex, England
来源
PLOS ONE | 2018年 / 13卷 / 06期
关键词
INFERENCE; VOLATILITY; TAIL;
D O I
10.1371/journal.pone.0198753
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
引用
收藏
页数:33
相关论文
共 9 条
  • [1] Estimation of Value at Risk in Currency Exchange Rate Portfolio Using Asymmetric GJR-GARCH Copula
    Nurrahmat, Mohamad Husein
    Noviyanti, Lienda
    Bachrudin, Achmad
    STATISTICS AND ITS APPLICATIONS, 2017, 1827
  • [2] Value-at-risk forecasts by dynamic spatial panel GJR-GARCH model for international stock indices portfolio
    Zhang, Wei-Guo
    Mo, Guo-Li
    Liu, Fang
    Liu, Yong-Jun
    SOFT COMPUTING, 2018, 22 (16) : 5279 - 5297
  • [3] Estimation of extreme value-at-risk: An EVT approach for quantile GARCH model
    Yi, Yanping
    Feng, Xingdong
    Huang, Zhuo
    ECONOMICS LETTERS, 2014, 124 (03) : 378 - 381
  • [4] Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations
    Ardia, David
    ECONOMETRICS JOURNAL, 2009, 12 (01) : 105 - 126
  • [5] Measuring extreme risk of sustainable financial system using GJR-GARCH model trading data-based
    Ma, Xiaomeng
    Yang, Ruixian
    Zou, Dong
    Liu, Rui
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2020, 50 : 526 - 537
  • [6] The dependence structure and portfolio risk of Malaysia's foreign exchange rates: the Bayesian GARCH-EVT-copula model
    Yeap, Xiu Wei
    Lean, Hooi Hooi
    Sampid, Marius Galabe
    Mohamad Hasim, Haslifah
    INTERNATIONAL JOURNAL OF EMERGING MARKETS, 2021, 16 (05) : 952 - 974
  • [7] Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model
    Lu, Xun Fa
    Lai, Kin Keung
    Liang, Liang
    ANNALS OF OPERATIONS RESEARCH, 2014, 219 (01) : 333 - 357
  • [8] Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model
    Tan, Chia-Yen
    Koh, You-Beng
    Ng, Kok-Haur
    Ng, Kooi-Huat
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2021, 56
  • [9] Value-at-Risk Analysis for Measuring Stochastic Volatility of Stock Returns: Using GARCH-Based Dynamic Conditional Correlation Model
    Afzal, Fahim
    Haiying, Pan
    Afzal, Farman
    Mahmood, Asif
    Ikram, Amir
    SAGE OPEN, 2021, 11 (01):