Strongly homotopy Lie algebras of one even and two odd dimensions

被引:7
作者
Fialowski, A
Penkava, M
机构
[1] Eotvos Lorand Univ, Dept Appl Anal, H-1117 Budapest, Hungary
[2] Univ Wisconsin, Dept Math, Eau Claire, WI 54702 USA
关键词
strongly homotopy Lie algebras; L-infinity algebras; superalgebras; Lie algebras; extensions; Moduli space;
D O I
10.1016/j.jalgebra.2004.08.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify strongly homotopy Lie algebras-also called Linfinity algebras-of one even and two odd dimensions, which are related to 2\1-dimensional Z(2)-graded Lie algebras. What makes this case interesting is that there are many nonequivalent Linfinity examples, in addition to the Z(2)-graded Lie algebra (or superalgebra) structures, yet the moduli space is simple enough that we can give a complete classification up to equivalence. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 16 条
  • [1] The geometry of the master equation and topological quantum field theory
    Alexandrov, M
    Schwarz, A
    Zaboronsky, O
    Kontsevich, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07): : 1405 - 1429
  • [2] The sh Lie structure of Poisson brackets in field theory
    Barnich, G
    Fulp, R
    Lada, T
    Stasheff, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) : 585 - 601
  • [3] BODIN A, IN PRESS HOMOLOGY HO
  • [4] Deformation theory of infinity algebras
    Fialowski, A
    Penkaya, M
    [J]. JOURNAL OF ALGEBRA, 2002, 255 (01) : 59 - 88
  • [5] FIALOWSKI A, QA0403302
  • [6] FIALOWSKI A, IN PRESS COMM CONTEM
  • [7] FIALOWSKI A, 2003, BANACH CTR PUBL, V55, P27
  • [8] Hinich V., 1993, ADV SOVIET MATH, V16, P1
  • [9] INTRODUCTION TO SH LIE-ALGEBRAS FOR PHYSICISTS
    LADA, T
    STASHEFF, J
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (07) : 1087 - 1103
  • [10] STRONGLY HOMOTOPY LIE-ALGEBRAS
    LADA, T
    MARKL, M
    [J]. COMMUNICATIONS IN ALGEBRA, 1995, 23 (06) : 2147 - 2161