Strongly homotopy Lie algebras of one even and two odd dimensions

被引:7
作者
Fialowski, A
Penkava, M
机构
[1] Eotvos Lorand Univ, Dept Appl Anal, H-1117 Budapest, Hungary
[2] Univ Wisconsin, Dept Math, Eau Claire, WI 54702 USA
关键词
strongly homotopy Lie algebras; L-infinity algebras; superalgebras; Lie algebras; extensions; Moduli space;
D O I
10.1016/j.jalgebra.2004.08.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify strongly homotopy Lie algebras-also called Linfinity algebras-of one even and two odd dimensions, which are related to 2\1-dimensional Z(2)-graded Lie algebras. What makes this case interesting is that there are many nonequivalent Linfinity examples, in addition to the Z(2)-graded Lie algebra (or superalgebra) structures, yet the moduli space is simple enough that we can give a complete classification up to equivalence. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 16 条
[1]   The geometry of the master equation and topological quantum field theory [J].
Alexandrov, M ;
Schwarz, A ;
Zaboronsky, O ;
Kontsevich, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07) :1405-1429
[2]   The sh Lie structure of Poisson brackets in field theory [J].
Barnich, G ;
Fulp, R ;
Lada, T ;
Stasheff, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (03) :585-601
[3]  
BODIN A, IN PRESS HOMOLOGY HO
[4]   Deformation theory of infinity algebras [J].
Fialowski, A ;
Penkaya, M .
JOURNAL OF ALGEBRA, 2002, 255 (01) :59-88
[5]  
FIALOWSKI A, QA0403302
[6]  
FIALOWSKI A, IN PRESS COMM CONTEM
[7]  
FIALOWSKI A, 2003, BANACH CTR PUBL, V55, P27
[8]  
Hinich V., 1993, ADV SOVIET MATH, V16, P1
[9]   INTRODUCTION TO SH LIE-ALGEBRAS FOR PHYSICISTS [J].
LADA, T ;
STASHEFF, J .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (07) :1087-1103
[10]   STRONGLY HOMOTOPY LIE-ALGEBRAS [J].
LADA, T ;
MARKL, M .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (06) :2147-2161