APPLICATION OF THE MULTI-OBJECTIVE PARETO-BASED GENETIC ALGORITHM IN SOLVING GEOSPATIAL OPTIMISATION PROBLEMS

被引:0
|
作者
Ponjavic, Mirza [2 ]
Avdagic, Zikrija [1 ]
Karabegovic, Almir [2 ]
机构
[1] Univ Sarajevo, Dept Comp Sci & Informat, Fac Elect Engn, Sarajevo 71000, Bosnia & Herceg
[2] Univ Sarajevo, Fac Civil Engn, Dept Geodesy, Sarajevo 71000, Bosnia & Herceg
来源
SGEM 2009: 9TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, VOL II, CONFERENCE PROCEEDING: MODERN MANAGEMENT OF MINE PRODUCING, GEOLOGY AND ENVIRONMENTAL PROTECTION | 2009年
关键词
multi-objective genetic algorithm; geospatial analysis; geoinformation system; location-allocation problem;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work studies the development and application of the multi-objective genetic algorithm based on the Pareto approach, as a tool for the decision making support in the geospatial analysis. Pareto-based evolutionary mechanism developed as an approach to multi-objective geospatial optimisation operates with fixed parameters of genetic operators. It can be used as efficient tool for multi-objective planning both for their power and flexibility and the fact that they generate a whole set of good solutions rather than just one "optimal" solution. The implementation of the suggested multi-objective Pareto based genetic algorithm over selected geospatial optimisation problem of fire station location demonstrates its ability of the discovery of multiple compromise solutions in a real spatial problem domain.
引用
收藏
页码:107 / +
页数:2
相关论文
共 50 条
  • [21] Hybrid Pareto-based tabu search algorithm for solving the multi-objective flexible Job Shop scheduling problem
    Li, Jun-Qing
    Pan, Quan-Ke
    Wang, Yu-Ting
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2010, 16 (07): : 1419 - 1426
  • [22] Pareto-Based Multi-objective Estimation of Distribution Algorithm with Gaussian Copulas and Application in RFID Network Planning
    Gao, Ying
    Peng, Lingxi
    Li, Fufang
    Liu, Miao
    Hu, Xiao
    2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2012, : 370 - 373
  • [23] MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
    Tariq, Iraq
    AlSattar, H. A.
    Zaidan, A. A.
    Zaidan, B. B.
    Abu Bakar, M. R.
    Mohammed, R. T.
    Albahri, O. S.
    Alsalem, M. A.
    Albahri, A. S.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3101 - 3115
  • [24] MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
    Iraq Tariq
    H. A. AlSattar
    A. A. Zaidan
    B. B. Zaidan
    M. R. Abu Bakar
    R. T. Mohammed
    O. S. Albahri
    M. A. Alsalem
    A. S. Albahri
    Neural Computing and Applications, 2020, 32 : 3101 - 3115
  • [25] Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems
    Li, Jun-Qing
    Pan, Quan-Ke
    Gao, Kai-Zhou
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 55 (9-12): : 1159 - 1169
  • [26] An Improved Parallel Adaptive Genetic Algorithm Based on Pareto Front for Multi-Objective Problems
    Liu, Guangyuan
    Zhang, Jingjun
    Gao, Ruizhen
    Shang, Yanmin
    2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 2, 2009, : 212 - 215
  • [27] Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems
    Jun-Qing Li
    Quan-Ke Pan
    Kai-Zhou Gao
    The International Journal of Advanced Manufacturing Technology, 2011, 55 : 1159 - 1169
  • [28] Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms
    Malard, JM
    Heredia-Langner, A
    Cannon, WR
    Mooney, R
    Baxter, DJ
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2005, 17 (14): : 1687 - 1704
  • [29] A pareto-based hybrid whale optimization algorithm with tabu search for multi-objective optimization
    AbdelAziz A.M.
    Soliman T.H.A.
    Ghany K.K.A.
    Sewisy A.A.E.-M.
    Algorithms, 2019, 12 (02):
  • [30] A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
    Ou, Junwei
    Zheng, Jinhua
    Ruan, Gan
    Hu, Yaru
    Zou, Juan
    Li, Miqing
    Yang, Shengxiang
    Tan, Xu
    APPLIED SOFT COMPUTING, 2019, 85