A mixed model approach to measurement error in semiparametric regression

被引:1
作者
Hattab, Mohammad W. [1 ]
Ruppert, David [2 ,3 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Anesthesiol & Crit Care Med, Baltimore, MD 21205 USA
[2] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY USA
[3] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY USA
关键词
Nonparametric regression; Penalized splines; Variance function estimation;
D O I
10.1007/s11222-021-10005-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An essential assumption in traditional regression techniques is that predictors are measured without errors. Failing to take into account measurement error in predictors may result in severely biased inferences. Correcting measurement-error bias is an extremely difficult problem when estimating a regression function nonparametrically. We propose an approach to deal with measurement errors in predictors when modelling flexible regression functions. This approach depends on directly modelling the mean and the variance of the response variable after integrating out the true unobserved predictors in a penalized splines model. We demonstrate through simulation studies that our approach provides satisfactory prediction accuracy largely outperforming previously suggested local polynomial estimators even when the model is incorrectly specified and is competitive with the Bayesian estimator.
引用
收藏
页数:14
相关论文
共 24 条
[1]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[2]  
Azzalini A., 2013, Institute of Mathematical Statistics Monographs, DOI 10.1017/cbo9781139248891
[3]   Bayesian smoothing and regression splines for measurement error problems [J].
Berry, SM ;
Carroll, RJ ;
Ruppert, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :160-169
[4]  
Carroll R. J., 2006, MEASUREMENT ERROR NO
[5]   Nonparametric regression in the presence of measurement error [J].
Carroll, RJ ;
Maca, JD ;
Ruppert, D .
BIOMETRIKA, 1999, 86 (03) :541-554
[6]  
CARROLL RJ, 1989, STAT MED, V8, P1075
[7]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[8]  
Davidian M., 1995, Nonlinear Models for Repeated Measurement Data
[9]   Practical bandwidth selection in deconvolution kernel density estimation [J].
Delaigle, A ;
Gijbels, I .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) :249-267
[10]   Estimation of integrated squared density derivatives from a contaminated sample [J].
Delaigle, A ;
Gijbels, I .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :869-886