Potential distribution theorem for the polymer-induced depletion between colloidal particles

被引:25
|
作者
Li, Zhidong [1 ]
Wu, Jianzhong [1 ]
机构
[1] Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92521 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2007年 / 126卷 / 14期
关键词
D O I
10.1063/1.2715595
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The authors investigated the polymer-mediated colloidal interactions in a good solvent wherein the particle size varies from that much smaller than the polymer radius of gyration up to macroscopic and the polymer concentration varies from that corresponding to a dilute solution to that close to a melt. At conditions directly accessible to molecular simulations, the theoretical predictions agree favorably with the simulation results for the distributions of polymer segments and for the polymer-mediated colloidal interactions. The theoretical methods were then exploited to examine the polymer structure and colloidal interactions when the particle/polymer size ratio changes from the "protein" limit to the "colloid" limit at different regimes of the polymer concentration (i.e., dilute, semidilute, and concentrated). The authors found that the surface curvature plays a significant role on the distribution of polymer segments near the particle surface at low polymer concentration, but this effect diminishes as the polymer concentration increases. The Derjaguin approximation works reasonably well at high polymer concentration even in the protein limit, but it may fail qualitatively at low polymer concentration where the polymer-induced colloidal force becomes long range. (c) 2007 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] New insights into re-entrant melting of microgel particles by polymer-induced aggregation experiments
    Schneider, Jochen
    Werner, Marcel
    Bartsch, Eckhard
    SOFT MATTER, 2018, 14 (19) : 3811 - 3817
  • [42] EFFECT OF LONG-RANGE INTERACTIONS ON THE DEPLETION FORCE BETWEEN COLLOIDAL PARTICLES
    WALZ, JY
    SHARMA, A
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1994, 168 (02) : 485 - 496
  • [43] RELATION BETWEEN STABILITY AND SURFACE POTENTIAL OF SPHERICAL COLLOIDAL PARTICLES
    MULLER, VM
    COLLOID JOURNAL-USSR, 1969, 31 (04): : 433 - &
  • [44] Comparing colloidal phase separation induced by linear polymer and by microgel particles
    Bayliss, K.
    van Duijneveldt, J. S.
    Faers, M. A.
    Vermeer, A. W. P.
    SOFT MATTER, 2011, 7 (21) : 10345 - 10352
  • [45] THE DISTRIBUTION OF PLASTICIZERS BETWEEN AQUEOUS AND POLYMER PHASES IN AQUEOUS COLLOIDAL POLYMER DISPERSIONS
    BODMEIER, R
    PAERATAKUL, O
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1994, 103 (01) : 47 - 54
  • [46] Casimir force between colloidal particles immersed in a critical polymer blend
    Ridouane, H
    Hachem, EK
    Benhamou, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (23): : 10780 - 10786
  • [47] Structures and interactions between two colloidal particles in adsorptive polymer solutions
    Li, Wenwu
    Man, Xingkun
    Qiu, Dong
    Zhang, Xinghua
    Yan, Dadong
    POLYMER, 2012, 53 (15) : 3409 - 3415
  • [48] POLYMER-INDUCED MEMBRANE-FUSION - POTENTIAL MECHANISM AND RELATION TO CELL-FUSION EVENTS
    LENTZ, BR
    CHEMISTRY AND PHYSICS OF LIPIDS, 1994, 73 (1-2) : 91 - 106
  • [49] Effects of polymer nonideality on depletion-induced phase behaviour of colloidal disks and rods
    Peters, Vincent F. D.
    Tuinier, Remco
    Vis, Mark
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (14)
  • [50] Induced force between colloidal particles with end-grafted polydisperse polymer chains: The role of the grafting mode
    Benhamou, M.
    Himmi, M.
    Kaidi, H.
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 230 : 337 - 343