Unified approach to statistical language modeling for Chinese

被引:0
作者
Gao, JF [1 ]
Wang, HF [1 ]
Li, MJ [1 ]
Lee, KF [1 ]
机构
[1] Microsoft Res China, Beijing 100080, Peoples R China
来源
2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI | 2000年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a unified approach to Chinese statistical language modeling (SLM). Applying SLM techniques like trigrams to Chinese is challenging because (1) there is no standard definition of words in Chinese, (2) word boundaries are not marked by spaces, and (3) there is a dearth of training data. Our unified approach automatically and consistently gathers a high-quality training data set from the web, creates a high-quality lexicon, and segments the training data using this lexicon, all using a maximum likelihood principle, which is consistent with the trigram training. We show that each of the methods leads to improvements over standard SLM, and that the combined method yields the best pinyin conversion result reported.
引用
收藏
页码:1703 / 1706
页数:4
相关论文
共 11 条
[1]  
CHIEN LF, 1997, P 20 INT C RES DEV I, P27
[2]  
Jelinek, 1990, READINGS SPEECH RECO, P450, DOI [10.1016/B978-0-08-051584-7.50045-0, DOI 10.1016/B978-0-08-051584-7.50045-0]
[3]  
Lin S. C., 1997, P 5 EUR C SPEECH COM
[4]  
Manning C.D., 1999, FDN STAT NATURAL LAN
[5]   A hidden Markov model information retrieval system [J].
Miller, DRH ;
Leek, T ;
Schwartz, RM .
SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, :214-221
[6]  
Rocchio J. J., 1971, RELEVANCE FEEDBACK I
[7]  
SEYMORE K, 1996, P INT C SPEECH LANG, V2, P232
[8]  
Stolcke Andreas, 1998, P DARPA BROADC NEWS, P270
[9]  
WONG PK, 1996, P 16 INT C COMP LING, P200
[10]  
Yang KC, 1998, INT CONF ACOUST SPEE, P169, DOI 10.1109/ICASSP.1998.674394