Reachable sets for a 3D accidentally symmetric molecule

被引:3
作者
Boscain, U. [1 ]
Pozzoli, E. [2 ,3 ]
Sigalotti, M. [2 ,3 ]
机构
[1] Univ Paris, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,INRIA, Paris, France
[2] INRIA, Paris, France
[3] Univ Paris, Sorbonne Univ, Lab Jacques Louis Lions, CNRS, Paris, France
基金
欧盟地平线“2020”;
关键词
Bilinear control; controllability; distributed-parameter systems; partial differential equations; quantum angular momentum; reachable states; Schrodinger equation; EXACT CONTROLLABILITY; QUANTUM;
D O I
10.1016/j.ifacol.2020.12.2588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the controllability properties of the quantum rotational dynamics of a 3D symmetric molecule, with electric dipole moment not collinear to the symmetry axis of the molecule (that is, an accidentally symmetric-top). We control the dynamics with three orthogonally polarized electric fields. When the dipole has a nonzero component along the symmetry axis, it is known that the dynamics is approximately controllable. We focus here our attention to the case where the dipole moment and the symmetry axis are orthogonal (that is, an orthogonal accidentally symmetric-top), providing a description of the reachable sets. Copyright (C) 2020 The Authors.
引用
收藏
页码:1943 / 1948
页数:6
相关论文
共 19 条
[1]   Modeling and Control of Quantum Systems: An Introduction [J].
Altafini, Claudio ;
Ticozzi, Francesco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1898-1917
[2]  
[Anonymous], 1981, ENCY MATH ITS APPL
[3]   CONTROLLABILITY FOR DISTRIBUTED BILINEAR-SYSTEMS [J].
BALL, JM ;
MARSDEN, JE ;
SLEMROD, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (04) :575-597
[4]   Controllability of a quantum particle in a moving potential well [J].
Beauchard, K ;
Coron, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (02) :328-389
[5]   A Weak Spectral Condition for the Controllability of the Bilinear Schrodinger Equation with Application to the Control of a Rotating Planar Molecule [J].
Boscain, U. ;
Caponigro, M. ;
Chambrion, T. ;
Sigalotti, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 311 (02) :423-455
[6]   Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems [J].
Boscain, Ugo ;
Gauthier, Jean-Paul ;
Rossi, Francesco ;
Sigalotti, Mario .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (03) :1225-1239
[7]   Multi-input Schrodinger equation: Controllability, tracking, and application to the quantum angular momentum [J].
Boscain, Ugo ;
Caponigro, Marco ;
Sigalotti, Mario .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3524-3551
[8]   EXACT CONTROLLABILITY IN PROJECTIONS OF THE BILINEAR SCHRODINGER EQUATION [J].
Caponigro, Marco ;
Sigalotti, Mario .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (04) :2901-2920
[9]   Controllability of the discrete-spectrum Schrodinger equation driven by an external field [J].
Chambrion, Thomas ;
Mason, Paolo ;
Sigalotti, Mario ;
Boscain, Ugo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (01) :329-349
[10]  
Cook R., 1984, MICROWAVE MOL SPECTR, V2nd