On extensions of pseudo-valuations on Hilbert algebras

被引:14
作者
Busneag, D [1 ]
机构
[1] Univ Craiova, Dept Math, Craiova 1100, Romania
关键词
Hilbert algebra; Hertz algebra; deductive system; valuation;
D O I
10.1016/S0012-365X(02)00552-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Buneag (Math. Japonica 44(2) (1996) 285) I defined a pseudo-valuation on a Hilbert algebra (A,-->,1) (cf, (J. Math. 2 (1985) 29; Collection de Logique Math. 21 (1966)) as a real-valued function v on A satisfying v(I) = 0 and v(x --> y) greater than or equal to v(y) - v(x) for every x, y is an element of A (v is called a valuation if x = 1 whenever v(x) = 0). In Busneag (Math. Japonica 44(2) (1996) 285) it is proved that every pseudo-valuation (valuation) v induces a pseudo-metric (metric) on A defined by d(v)(x, y) = v(x --> y) + v(y --> x) for every x, y is an element of A, under which --> is uniformly continuous in both variables, The aim of this paper is to provide several theorems on extensions of pseudo-valuations (valuations), (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1952, REV HISP AM
[2]  
Balbes R., 1974, DISTRIBUTIVE LATTICE
[3]   F-MULTIPLIERS AND THE LOCALIZATION OF HILBERT-ALGEBRAS [J].
BUSNEAG, D .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1990, 36 (04) :331-338
[4]  
Busneag D., 1987, B MATH SOC SCI MATH, V31, P9
[5]  
Busneag D., 1996, MATH JPN, V44, P285
[6]  
Busneag D., 1985, KOBE J MATH, V2, P29
[7]  
BUSNEAG D, 1988, ANAL U CRAIOVA MFC, V16, P34
[8]  
Diego A, 1966, COLLECTION LOGIQUE M, VXXI
[9]  
Hilbert D., 1939, Grundlagen der Mathematik, V2
[10]  
Katrinak T., 1968, ACTA FAC RERUM NAT U, V19, P181