Photoresponsive liquid crystalline polymer single-chain nanoparticles

被引:25
|
作者
Fan, Weizheng [1 ]
Tong, Xia [1 ]
Li, Guo [1 ]
Zhao, Yue [1 ]
机构
[1] Univ Sherbrooke, Dept Chim, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
INTRAMOLECULAR CROSS-LINKING; BLOCK-COPOLYMERS; WATER; MACROMOLECULES; DEFORMATION; COVALENT; DELIVERY; BEHAVIOR; DESIGN; SHAPE;
D O I
10.1039/c7py00668c
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new type of multifunctional polymer single-chain nanoparticle (SCNP) is reported, which is prepared from a side-chain liquid crystalline polymer (LCP), namely, poly{6-[4-(4-methoxyphenylazo)phenoxy]hexylmethacrylate-co-4-methyl-[7-(methacryloyl)oxy-ethyl-oxy]coumarin} (PAzoMACMA). The polymer's side groups comprise photoisomerizable azobenzene in majority and photodimerizable coumarins in minority, with the former as mesogens and the latter for intra-chain photocrosslinking. Despite the sub-15 nm size, confinement and crosslinking, the liquid crystalline (LC) phases of bulk PAzoMACMA persist in SCLCPs. Such LC-SCNPs exhibit a number of interesting and peculiar properties. While their dispersion in THF is non-fluorescent, when dispersed in chloroform, the nanoparticles appear to agglomerate to a certain degree and display significant fluorescence that is different for SCNPs rich in the trans or cis isomer of azobenzene. The azobenzene LC-SCNPs also undergo photoinduced deformation, similar to azobenzene micro- or colloidal particles. However, the elongational deformation of the nanoparticles is dependent on the linearly polarized excitation wavelength. While under polarized 365 nm UV irradiation the SCNP stretching direction is perpendicular to the light polarization, under polarized 400-500 nm visible light irradiation, the stretching takes place along the light polarization direction. Finally, an all-polymer nanocomposite was prepared by dispersing the LC-SCNPs in poly(methyl methacrylate) (PMMA), and mechanically stretching-induced orientation of azobenzene mesogens developed along the chain direction. The interesting properties of LC-SCNPs unveiled in this study suggest new possibilities for applications.
引用
收藏
页码:3523 / 3529
页数:7
相关论文
共 50 条
  • [41] Single-chain statistics in polymer systems
    Aksimentiev, A
    Holyst, R
    PROGRESS IN POLYMER SCIENCE, 1999, 24 (07) : 1045 - 1093
  • [42] Single-Chain Semiconducting Polymer Dots
    Ye, Fangmao
    Sun, Wei
    Zhang, Yue
    Wu, Changfeng
    Zhang, Xuanjun
    Yu, Jiangbo
    Rong, Yu
    Zhang, Miqin
    Chiu, Daniel T.
    LANGMUIR, 2015, 31 (01) : 499 - 505
  • [43] Supramolecular Single-Chain Polymeric Nanoparticles
    ter Huurne, Gijs M.
    Palmans, Anja R. A.
    Meijer, E. W.
    CCS CHEMISTRY, 2019, 1 (01): : 64 - 82
  • [44] Advances in Fluorescent Single-Chain Nanoparticles
    De-La-Cuesta, Julen
    Gonzalez, Edurne
    Pomposo, Jose A.
    MOLECULES, 2017, 22 (11):
  • [45] Compartmentalised single-chain nanoparticles and their function
    Thuemmler, Justus F.
    Binder, Wolfgang H.
    CHEMICAL COMMUNICATIONS, 2024, 60 (97) : 14332 - 14345
  • [46] What Is Next in Single-Chain Nanoparticles?
    Hanlon, Ashley M.
    Lyon, Christopher K.
    Berda, Erik B.
    MACROMOLECULES, 2016, 49 (01) : 2 - 14
  • [47] Dynamic covalent single-chain nanoparticles
    Berda, Erik
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [48] Single-Chain Nanoparticles as Catalytic Nanoreactors
    Rothfuss, Hannah
    Knoefel, Nicolai D.
    Roesky, Peter W.
    Barner-Kowollik, Christopher
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (18) : 5875 - 5881
  • [49] Thermoresponsive Dynamic Covalent Single-Chain Polymer Nanoparticles Reversibly Transform into a Hydrogel
    Whitaker, Daniel E.
    Mahon, Clare S.
    Fulton, David A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (03) : 956 - 959
  • [50] Enhancing Cellular Internalization of Single-Chain Polymer Nanoparticles via Polyplex Formation
    Hamelmann, Naomi M.
    Uijttewaal, Sjoerd
    Hujaya, Sry D.
    Paulusse, Jos M. J.
    BIOMACROMOLECULES, 2022, 23 (12) : 5036 - 5042