Theoretical studies of the optical and EPR spectra for Fe3+ ion in the MF3:Fe3+ (M = Al, Ga) systems

被引:1
|
作者
Li Ju-Fen [1 ]
Kuang Xiao-Yu [2 ,3 ]
Mao Ai-Jie [2 ]
机构
[1] SW Petr Univ, Sch Sci, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[3] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110016, Peoples R China
关键词
MF3:Fe3+ (M = Al; Ga); system; Local lattice structure distortion; EPR spectrum; Ligand-fields theory; ELECTRON-PARAMAGNETIC-RESONANCE; FE-3+; GLASS;
D O I
10.1016/j.jlumin.2009.10.011
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By analyzing the EPR spectra of Fe3+ ion in the fluorinde glasses, the local lattice structures around impurity Fe3+ ion in MF3:Fe3+ (M = Al, Ga) systems have been studied by means of diagonalizing the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for a d(5) configuration ion in a trigonal ligand-field. Both the second-order and fourth-order EPR parameters D and (a-F) are taken simultaneously in the structural investigation. The results indicate that the local lattice structure around octahedral Fe3+ center has an expansion distortion for Fe3+ in MF3:Fe3+ (M = Al, Ga). The expansion distortion may be ascribed to the fact that the radius of Fe3+ ion is larger than that of Al3+ ion and Ga3+ ion, and the Fe3+ ion will push the fluoride ligands upwards and downwards, respectively. The local lattice structure parameters R = 1.927 A, theta = 55.538 degrees for Fe3+ in AlF3:Fe3+ and R=1.931 A, theta = 56.09 degrees for Fe3+ in GaF3:Fe3+ are determined, respectively, and the EPR spectra of the MF3:Fe3+ (M = Al, Ga) systems are satisfactorily explained. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:451 / 454
页数:4
相关论文
共 50 条
  • [31] Determination of the Fe2+/Fe3+ ratio in nuclear waste glasses
    Todd Hunter, R.
    Edge, Mark
    Kalivretenos, Aristotle
    Brewer, Kathy M.
    Brock, Nancy A.
    Hawkes, Alice E.
    Fanning, James C.
    Journal of the American Ceramic Society, 1989, 72 (06): : 943 - 947
  • [32] Fe3+ in pottery: Distinction of the use for cooking and production parameters
    Mangueira, G. M.
    Teixeira, S.
    Silva, F. A.
    Franco, R. W. A.
    APPLIED CLAY SCIENCE, 2016, 129 : 88 - 91
  • [33] Evaluation of voltammetric redox potential for Fe3+/Fe2+ in silicate liquids
    Sugawara, Toru
    Fujita, Yoshihisa
    Kato, Mitsuo
    Yoshida, Satoshi
    Matsuoka, Jun
    Miura, Yoshinari
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2009, 117 (1372) : 1317 - 1323
  • [34] Electron paramagnetic resonance of Fe3+ ions in Bi2O3-PbO-Fe2O3 glasses
    Prakash, C
    Husain, S
    Singh, RJ
    Mollah, S
    JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 326 (1-2) : 47 - 49
  • [35] Quantification of the Fe3+ concentration in lead silicate glasses using X-band CW-EPR
    Cnockaert, Vincent
    Maes, Kwinten
    Bellemans, Inge
    Crivits, Tijl
    Vrielinck, Henk
    Blanpain, Bart
    Verbeken, Kim
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 536
  • [36] EPR Analysis of Fe3+ and Mn2+ Complexation Sites in Fulvic Acid Extracted from Lignite
    Klencsar, Zoltan
    Kontos, Zoltan
    JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (12) : 3190 - 3203
  • [37] Colloidal stability and chemical reactivity of complex colloids containing Fe3+
    van Leeuwen, Y. M.
    Velikov, K. P.
    Kegel, W. K.
    FOOD CHEMISTRY, 2014, 155 : 161 - 166
  • [38] A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore
    Lin, Weiying
    Long, Lingliang
    Yuan, Lin
    Cao, Zengmei
    Feng, Jianbo
    ANALYTICA CHIMICA ACTA, 2009, 634 (02) : 262 - 266
  • [39] EPR Study of Cr3+ and Fe3+ Impurity Ions in Nominally Pure and Co2+-Doped YAlO3 Single Crystals
    Stefaniuk, I.
    Rudowicz, C.
    Gnutek, P.
    Suchocki, A.
    APPLIED MAGNETIC RESONANCE, 2009, 36 (2-4) : 371 - 380
  • [40] EPR Study of Cr3+ and Fe3+ Impurity Ions in Nominally Pure and Co2+-Doped YAlO3 Single Crystals
    I. Stefaniuk
    C. Rudowicz
    P. Gnutek
    A. Suchocki
    Applied Magnetic Resonance, 2009, 36 : 371 - 380