On control of nonlinear chaotic dynamical systems

被引:0
|
作者
Magnitskii, NA [1 ]
Sidorov, SV [1 ]
机构
[1] Russian Acad Sci, Inst Syst Anal, Moscow 117312, Russia
关键词
nonlinear dynamical system; chaos; periodic orbit; stablilzation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the present paper the problem of localization and stabilization of an unstable periodic trajectory of a nonlinear ordinary and delay equations with chaotic behavior is considered. For example unstable periodic orbits of Rossler system and Mackey-Glass equation are exstracted from their chaotic attractors. Copyright (C) 2001 IFAC.
引用
收藏
页码:783 / 787
页数:5
相关论文
共 50 条
  • [21] Nonlinear Control of Networked Dynamical Systems
    Morrison, Megan
    Kutz, J. Nathan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (01): : 174 - 189
  • [22] Subsystems on nonlinear control dynamical systems
    V. I. Elkin
    Doklady Mathematics, 2008, 78 : 804 - 806
  • [23] Decentralised control of nonlinear dynamical systems
    Udwadia, Firdaus E.
    Koganti, Prasanth B.
    Wanichanon, Thanapat
    Stipanovic, Dusan M.
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (04) : 827 - 843
  • [24] Subsystems on Nonlinear Control Dynamical Systems
    Elkin, V. I.
    DOKLADY MATHEMATICS, 2008, 78 (02) : 804 - 806
  • [25] Control of chaos in nonlinear dynamical systems
    Magnitskii, NA
    Sidorov, SV
    DIFFERENTIAL EQUATIONS, 1998, 34 (11) : 1501 - 1509
  • [26] Control of chaotic behavior in high order dynamical systems
    Boukabou, A
    Mansouri, N
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 516 - 521
  • [27] Estimation of transport times for chaotic dynamical control systems
    Khryashchev, SM
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 528 - 533
  • [28] LQR based optimal control of chaotic dynamical systems
    Choudhary, Santosh Kumar
    International Journal of Modelling and Simulation, 2015, 35 (3-4): : 104 - 112
  • [29] Control of Chaotic Dynamical Systems using RBF Networks
    Ishikawa, Yoichi
    Masukake, Yuichi
    Ishida, Yoshihisa
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 19, 2007, 19 : 175 - 178
  • [30] Tracking control of chaotic dynamical systems with feedback linearization
    齐冬莲
    马国进
    JournalofCoalScience&Engineering(China), 2005, (01) : 86 - 88