ION SIZE AND VALENCE EFFECTS ON IONIC FLOWS VIA POISSON-NERNST-PLANCK MODELS

被引:17
作者
Bates, Peter W. [1 ]
Liu, Weishi [2 ]
Lu, Hong [3 ]
Zhang, Mingji [4 ]
机构
[1] Michigan State Univ, Dept Math, 619 Red Cedar Rd, E Lansing, MI 48824 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[4] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
基金
美国国家科学基金会;
关键词
ionic flow; Poisson-Nernst-Planck models; ion size and valence effects; DENSITY-FUNCTIONAL THEORY; I-V RELATIONS; FREE-ENERGY MODEL; BROWNIAN DYNAMICS; QUALITATIVE PROPERTIES; ASYMPTOTIC EXPANSIONS; CHANNELS; SYSTEMS; STATE; SELECTIVITY;
D O I
10.4310/CMS.2017.v15.n4.a1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study boundary value problems of a quasi-one-dimensional steady-state Poisson Nernst Planck model with a local hard-sphere potential for ionic flows of two oppositely charged ion species through an ion channel, focusing on effects of ion sizes and ion valences. The flow properties of interest, individual fluxes and total flow rates of mixture, depend on multiple physical parameters such as boundary conditions (boundary concentrations and boundary potentials) and diffusion coefficients, in addition to ion sizes and ion valences. For the relatively simple setting and assumptions of the model in this paper, we are able to characterize, almost completely, the distinct effects of the nonlinear interplay between these physical parameters. The boundaries of different parameter regions are identified through a number of critical values that are explicitly expressed in terms of the physical parameters. We believe our results will provide useful insights for numerical and even experimental studies of ionic flows through membrane channels.
引用
收藏
页码:881 / 901
页数:21
相关论文
共 64 条
[1]   Asymptotic Expansions of I-V Relations via a Poisson-Nernst-Planck System [J].
Abaid, Nicole ;
Eisenberg, Robert S. ;
Liu, Weishi .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04) :1507-1526
[2]   ION FLOW THROUGH NARROW MEMBRANE CHANNELS .1. [J].
BARCILON, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (05) :1391-1404
[3]   Ion flow through narrow membrane channels: part II [J].
Barcilon, Victor ;
Chen, D.-P. ;
Eisenberg, R.S. .
SIAM Journal on Applied Mathematics, 1992, 52 (05) :1405-1425
[4]   Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study [J].
Barcilon, V ;
Chen, DP ;
Eisenberg, RS ;
Jerome, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (03) :631-648
[5]  
Bikerman JJ, 1942, PHILOS MAG, V33, P384
[6]   Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition [J].
Boda, D ;
Busath, DD ;
Eisenberg, B ;
Henderson, D ;
Nonner, W .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (20) :5154-5160
[7]   Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems [J].
Boda, D ;
Gillespie, D ;
Nonner, W ;
Henderson, D ;
Eisenberg, B .
PHYSICAL REVIEW E, 2004, 69 (04) :10
[8]   Inverse problems related to ion channel selectivity [J].
Burger, Martin ;
Eisenberg, Robert S. ;
Engl, Heinz W. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (04) :960-989
[9]   Three-dimensional Poisson-Nernst-Planck theory studies:: Influence of membrane electrostatics on gramicidin A channel conductance [J].
Cárdenas, AE ;
Coalson, RD ;
Kurnikova, MG .
BIOPHYSICAL JOURNAL, 2000, 79 (01) :80-93
[10]   Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation [J].
Chaudhry, Jehanzeb Hameed ;
Bond, Stephen D. ;
Olson, Luke N. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (03) :347-364