High precision large area PLD of X-ray optical multilayers

被引:36
作者
Dietsch, R
Holz, T
Mai, H
Meyer, CF
Scholz, R
Wehner, B
机构
[1] Fraunhofer Inst Werkstoff & Strahltech IWS, D-01277 Dresden, Germany
[2] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany
[3] TU Dresden, D-01069 Dresden, Germany
关键词
laser ablation; PLD; large area PLD; X-ray optics; multilayer; Ni/C multilayer; X-ray reflectometry; high resolution electron microscopy;
D O I
10.1016/S0169-4332(97)00671-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To realize high quality X-ray optical multilayer stacks on large areas a double-beam PLD source was integrated into a commercial MBE system. Optimization of ablation conditions and film growth regime, resp., for various kinds of homogeneous thin films and multilayer systems has been realized by a reproducible variation of pulse energy and repetition rate of each of the two Nd:YAG-lasers. In addition, the lasers can be independently controlled by a predetermined pulse delay. Thus, plasma parameters of two plumes generated from locally separated origins can be influenced by the pulse delay of the Nd:YAG-lasers, too. The influence of laser parameters and pulse delay on thin film growth is investigated by the deposition of Ni/C layer stacks. Optimum irradiation conditions are zero delay and moderate pulse energies. Multilayer interface roughnesses on the order of sigma(R) approximate to 0.1 nm are deduced from high resolution electron microscopy (HREM)-micrographs. The interface roughness increases with higher pulse energy. For changing the pulse delay from tau = 0 ns to tau = 2.5 ms, a destruction of the layer stack is observed. Laterally graded Ni/C multilayers showing X-ray optical activity were synthesized with these optimized deposition parameters in the period thickness range from 3 to 5 nm. Average values of thickness gradients typically Delta t/Delta x approximate to 2 x 10(-8) for 4" substrate length in maximum and period thickness variations on the order of sigma(1) approximate to 0.1 nm are confirmed by grazing incidence X-ray reflectometry end HREM. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:451 / 456
页数:6
相关论文
共 50 条
[31]   On the optical design of a large X-ray mirror based on Silicon Pore Optics [J].
Vacanti, Giuseppe ;
Barriere, Nicolas M. ;
Collon, Maximilien J. .
OPTICS FOR EUV, X-RAY, AND GAMMA-RAY ASTRONOMY X, 2021, 11822
[32]   Precision X-ray optics for fundamental interactions in atomic physics, resolving discrepancies in the X-ray regime [J].
C. T. Chantler ;
Z. Barnea ;
C. Q. Tran ;
J. B. Tiller ;
D. Paterson .
Optical and Quantum Electronics, 1999, 31 :495-505
[33]   Precision X-ray optics for fundamental interactions in atomic physics, resolving discrepancies in the X-ray regime [J].
Chantler, CT ;
Barnea, Z ;
Tran, CQ ;
Tiller, JB ;
Paterson, D .
OPTICAL AND QUANTUM ELECTRONICS, 1999, 31 (5-7) :495-505
[34]   Development of an X-ray Telescope with a Large Effective Area for the Iron K line band [J].
Matsumoto, Hironori ;
Tachibana, Sasagu ;
Yoshikawa, Shun ;
Tamura, Keisuke ;
Mori, Hideyuki ;
Yamashita, Kojun ;
Mitsuishi, Ikuyuki ;
Tawara, Yuzuru ;
Kunieda, Hideyo .
OPTICS FOR EUV, X-RAY, AND GAMMA-RAY ASTRONOMY VII, 2015, 9603
[35]   Toward large-area sub-arcsecond x-ray telescopes II [J].
O'Dell, Stephen L. ;
Allured, Ryan ;
Ames, Andrew O. ;
Biskach, Michael P. ;
Broadway, David M. ;
Bruni, Ricardo J. ;
Burrows, David N. ;
Cao, Jian ;
Chalifoux, Brandon D. ;
Chan, Kai-Wing ;
Chung, Yip-Wah ;
Cotroneo, Vincenzo ;
Elsner, Ronald F. ;
Gaskin, Jessica A. ;
Gubarev, Mikhail V. ;
Heilmann, Ralf K. ;
Hertz, Edward ;
Jackson, Thomas N. ;
Kilaru, Kiranmayee ;
Kolodziejczak, Jeffery J. ;
McClelland, Ryan S. ;
Ramsey, Brian D. ;
Reid, Paul B. ;
Riveros, Raul E. ;
Roche, Jacqueline M. ;
Romaine, Suzanne E. ;
Saha, Timo T. ;
Schattenburg, Mark L. ;
Schwartz, Daniel A. ;
Schwartz, Eric D. ;
Solly, Peter M. ;
Trolier-McKinstry, Susan E. ;
Ulmer, Melville P. ;
Vikhlinin, Alexey ;
Wallace, Margeaux L. ;
Wang, Xiaoli ;
Windt, David L. ;
Yao, Youwei ;
Ye, Shi ;
Zhang, William W. ;
Zuo, Heng .
ADAPTIVE X-RAY OPTICS IV, 2016, 9965
[36]   Constellation-X to Generation-X: Evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics [J].
Reid, P ;
Cameron, R ;
Cohen, L ;
Elvis, M ;
Gorenstein, P ;
Jerius, D ;
Petre, R ;
Podgorski, W ;
Schwartz, D ;
Zhang, W .
UV AND GAMMA-RAY SPACE TELESCOPE SYSTEMS, PTS 1 AND 2, 2004, 5488 :325-334
[37]   Development of High Efficiency and High Precision X-ray Reflective Optics for Advanced Light Sources at IPOE [J].
Zhang, Zhe ;
Huang, Qiushi ;
Qi, Runze ;
Zhang, Zhong ;
Yi, Shengzhen ;
Li, Wenbin ;
Yu, Jun ;
Sheng, Pengfeng ;
Wang, Zhanshan .
X-RAY LASERS 2023, 2024, 403 :145-154
[38]   Decoherence phenomenon in X-ray diffraction and scattering from rough multilayers [J].
Chernov, VA ;
Kondratiev, VI ;
Kovalenko, NV ;
Mytnichenko, SV ;
Zolotarev, KV .
PHYSICA B-CONDENSED MATTER, 2005, 357 (1-2) :232-236
[39]   Numerical and experimental study of disordered multilayers for broadband x-ray reflection [J].
vanLoevezijn, P ;
Schlatmann, R ;
Verhoeven, J ;
vanTiggelen, BA ;
Gullikson, EM .
APPLIED OPTICS, 1996, 35 (19) :3614-3619
[40]   Diamond X-ray refractive lenses with high acceptance [J].
Polikarpov, M. ;
Polikarpov, V. ;
Snigireva, I. ;
Snigirev, A. .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE SYNCHROTRON AND FREE ELECTRON LASER RADIATION: GENERATION AND APPLICATION (SFR-2016), 2016, 84 :213-220