Strain-rate dependency and impact dynamics of closed-cell aluminium foams

被引:45
作者
Kader, M. A. [1 ,2 ]
Hazell, P. J. [2 ]
Islam, M. A. [2 ]
Ahmed, S. [3 ]
Hossain, M. M. [2 ]
Escobedo, J. P. [2 ]
Saadatfar, M. [1 ,4 ]
机构
[1] Australian Natl Univ, Res Sch Phys, Dept Appl Math, Canberra, ACT 2601, Australia
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2612, Australia
[3] Bangladesh Univ Engn & Technol, Dept Civil Engn, Dhaka 1000, Bangladesh
[4] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 818卷
基金
澳大利亚研究理事会;
关键词
Aluminium foam; Strain-rate effect; Impact; X-ray micro-computed tomography; Finite element modelling; COMPRESSIVE BEHAVIOR; MECHANICAL-PROPERTIES; SEGMENTATION; ENHANCEMENT; INDENTATION;
D O I
10.1016/j.msea.2021.141379
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strain rate sensitivity and deformation mechanisms of closed-cell aluminium foams under low-velocity impact loadings are investigated in this study. Instrumented drop-weight impact experiments and Finite Element (FE) modelling were conducted to explore the deformation rate dependency of aluminium foams (manufactured by CYMATTM corporation). An X-ray micro-Computed Tomography (XCT) reconstructed foam geometry was used in the FE modelling approach to explore actual deformation mechanisms and strain rate sensitivity of foams. The deformation and pore collapse mechanisms were explored through investigating the stress and plastic strain contours. Our results show that the FE modelling with rate-dependent material properties agreed with the dynamic experimental results. The foam showed significant rate sensitivity within the examined range of strain rates. Our modelling and experimental results collectively indicate that the rate sensitivity of the base material is the primarily responsible for enhancing strength during impacts. Furthermore, the FE modelling with rateindependent material properties and unique foam topology confirms the negligible inertia effect at low velocity impacts.
引用
收藏
页数:9
相关论文
共 54 条
[21]   Novel design of closed-cell foam structures for property enhancement [J].
Kader, M. A. ;
Hazell, P. J. ;
Brown, A. D. ;
Tahtali, M. ;
Ahmed, S. ;
Escobedo, J. P. ;
Saadatfar, M. .
ADDITIVE MANUFACTURING, 2020, 31
[22]  
Kader Md Abdul, 2016, Applied Mechanics and Materials, V846, P133, DOI 10.4028/www.scientific.net/AMM.846.133
[23]   Modelling and characterization of cell collapse in aluminium foams during dynamic loading [J].
Kader, M. A. ;
Islam, M. A. ;
Hazell, P. J. ;
Escobedo, J. P. ;
Saadatfar, M. ;
Brown, A. D. ;
Appleby-Thomas, G. J. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2016, 96 :78-88
[24]   Microstructural effect on time-dependent plasticity of nanoporous gold [J].
Kang, Na-Ri ;
Gwak, Eun-Ji ;
Jeon, Hansol ;
Song, Eunji ;
Kim, Ju-Young .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 109 :108-120
[25]   Space-Filling X-Ray Source Trajectories for Efficient Scanning in Large-Angle Cone-Beam Computed Tomography [J].
Kingston, Andrew M. ;
Myers, Glenn R. ;
Latham, Shane J. ;
Recur, Benoit ;
Li, Heyang ;
Sheppard, Adrian P. .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03) :447-458
[26]   A numerical study on deformation mode and strength enhancement of metal foam under dynamic loading [J].
Li, L. ;
Xue, P. ;
Luo, G. .
MATERIALS & DESIGN, 2016, 110 :72-79
[27]  
Lorna J.Gibson., 1999, CELLULAR SOLIDS STRU
[28]   Dynamic indentation and penetration of aluminium foams [J].
Lu, G. ;
Shen, J. ;
Hou, W. ;
Ruan, D. ;
Ong, L. S. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2008, 50 (05) :932-943
[29]  
Lu G., 2003, ENERGY ABSORPTION ST, DOI DOI 10.1533/9781855738584.215
[30]   Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability [J].
Mieszala, Maxime ;
Hasegawa, Madoka ;
Guillonneau, Gaylord ;
Bauer, Jens ;
Raghavan, Rejin ;
Frantz, Cedric ;
Kraft, Oliver ;
Mischler, Stefano ;
Michler, Johann ;
Philippe, Laetitia .
SMALL, 2017, 13 (08)