MHD dynamo simulation using the GeoFEM platform - verification by the dynamo benchmark test

被引:18
作者
Matsui, H
Okuda, H
机构
[1] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
[2] Univ Tokyo, Dept Quantum Engn & Syst Sci, Bunkyo Ku, Tokyo 1138656, Japan
关键词
geodynamo; magnetohydrodynamics; finite element method; dynamo benchmark test;
D O I
10.1080/10618560410001710450
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We verified a magnetohydrodynamic (MHD) simulation code in a rotating spherical shell using the parallel finite element method by comparing with the dynamo benchmark test by Christensen et al. ["A numerical dynamo benchmark", Physics of Earth and Planetary Interiors , 128 (2001), 25-34]. We performed the non-magnetic case and dynamo with the insulated inner core case of the benchmark test. The results show that all results of the MHD case have <5% differences from the benchmark solutions. Only the drift frequency in the non-magnetic case duffers by more. This discrepancy is attributed to the small amplitude of the drift frequency in the non-magnetic case. We conclude that the present simulation code can represent dynamics and behavior of convection pattern and magnetic field although the present simulation model has some limitations such as the finite size of simulation domain.
引用
收藏
页码:15 / 22
页数:8
相关论文
共 15 条
[1]   ICOSAHEDRAL DISCRETIZATION OF THE 2-SPHERE [J].
BAUMGARDNER, JR ;
FREDERICKSON, PO .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1107-1115
[2]   A non-linear, 3-D spherical α2 dynamo using a finite element method [J].
Chan, KH ;
Zhang, K ;
Zou, J ;
Schubert, G .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2001, 128 (1-4) :35-50
[3]   A nonlinear vacillating dynamo induced by an electrically heterogeneous mantle [J].
Chan, KH ;
Zhang, K ;
Zou, J ;
Schubert, G .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (23) :4411-4414
[4]   Numerical modelling of the geodynamo: a systematic parameter study [J].
Christensen, U ;
Olson, P ;
Glatzmaier, GA .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 138 (02) :393-409
[5]   A numerical dynamo benchmark [J].
Christensen, UR ;
Aubert, J ;
Cardin, P ;
Dormy, E ;
Gibbons, S ;
Glatzmaier, GA ;
Grote, E ;
Honkura, Y ;
Jones, C ;
Kono, M ;
Matsushima, M ;
Sakuraba, A ;
Takahashi, F ;
Tilgner, A ;
Wicht, J ;
Zhang, K .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2001, 128 (1-4) :25-34
[6]   A 3-DIMENSIONAL CONVECTIVE DYNAMO SOLUTION WITH ROTATING AND FINITELY CONDUCTING INNER-CORE AND MANTLE [J].
GLATZMAIER, GA ;
ROBERTS, PH .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1995, 91 (1-3) :63-75
[7]   COMPUTER-SIMULATION OF A MAGNETOHYDRODYNAMIC DYNAMO .2. [J].
KAGEYAMA, A ;
SATO, T ;
WATANABE, K ;
HORIUCHI, R ;
HAYASHI, T ;
TODO, Y ;
WATANABE, TH ;
TAKAMARU, H .
PHYSICS OF PLASMAS, 1995, 2 (05) :1421-1431
[8]   Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action [J].
Kuang, WJ ;
Bloxham, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 153 (01) :51-81
[9]   An earth-like numerical dynamo model [J].
Kuang, WL ;
Bloxham, J .
NATURE, 1997, 389 (6649) :371-374
[10]   Thermal convection analysis in a rotating shell by a parallel finite-element method - development of a thermal-hydraulic subsystem of GeoFEM [J].
Matsui, H ;
Okuda, H .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2002, 14 (6-7) :465-481