ON CONFORMALLY FLAT MANIFOLDS WITH CONSTANT POSITIVE SCALAR CURVATURE

被引:21
作者
Catino, Giovanni [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Conformally flat manifold; rigidity; DEFORMATION;
D O I
10.1090/proc/12925
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify compact conformally flat n-dimensional manifolds with constant positive scalar curvature and satisfying an optimal integral pinching condition: they are covered isometrically by either S-n with the round metric, S-1 x Sn-1 with the product metric or S-1 x Sn-1 with a rotationally symmetric Derdzinski metric.
引用
收藏
页码:2627 / 2634
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 1952, Comment. Math. Helv, DOI [DOI 10.1007/BF02564308, 10.1007/BF02564308]
[2]  
BERGER M, 1969, J DIFFER GEOM, V3, P379
[3]   VECTOR FIELDS AND RICCI CURVATURE [J].
BOCHNER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (09) :776-797
[4]  
Bourguignon J.P., 1990, Progress in Nonlinear Differential Equations and Their Applications, V4, P251
[5]   Conformally flat manifolds with nonnegative Ricci curvature [J].
Carron, G ;
Herzlich, M .
COMPOSITIO MATHEMATICA, 2006, 142 (03) :798-810
[6]   A note on Codazzi tensors [J].
Catino, Giovanni ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
MATHEMATISCHE ANNALEN, 2015, 362 (1-2) :629-638
[7]   Compact locally conformally flat Riemannian manifolds [J].
Cheng, QM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :459-465
[8]   ON COMPACT RIEMANNIAN-MANIFOLDS WITH HARMONIC CURVATURE [J].
DERDZINSKI, A .
MATHEMATISCHE ANNALEN, 1982, 259 (02) :145-152
[9]  
DeTurck D. M., 1989, Forum Math., V1, P377, DOI DOI 10.1515/FORM.1989.1.377
[10]  
Goldberg S.I., 1969, KODAI MATH SEM REP, V21, P226, DOI DOI 10.2996/KMJ/1138845885