A Hybrid Framework for Multivariate Time Series Forecasting of Daily Urban Water Demand Using Attention-Based Convolutional Neural Network and Long Short-Term Memory Network

被引:19
|
作者
Zhou, Shengwen [1 ,2 ]
Guo, Shunsheng [1 ,2 ]
Du, Baigang [1 ,2 ]
Huang, Shuo [1 ,2 ]
Guo, Jun [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China
[2] Hubei Digital Mfg Key Lab, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
water demand forecasting; multivariate time series; convolutional neural network; long short-term memory; attention mechanism; encoder-decoder network; MODEL;
D O I
10.3390/su141711086
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban water demand forecasting is beneficial for reducing the waste of water resources and enhancing environmental protection in sustainable water management. However, it is a challenging task to accurately predict water demand affected by a range of factors with nonlinear and uncertainty temporal patterns. This paper proposes a new hybrid framework for urban daily water demand with multiple variables, called the attention-based CNN-LSTM model, which combines convolutional neural network (CNN), long short-term memory (LSTM), attention mechanism (AM), and encoder-decoder network. CNN layers are used to learn the representation and correlation between multivariate variables. LSTM layers are utilized as the building blocks of the encoder-decoder network to capture temporal characteristics from the input sequence, while AM is introduced to the encoder-decoder network to assign corresponding attention according to the importance of water demand multivariable time series at different times. The new hybrid framework considers correlation between multiple variables and neglects irrelevant data points, which helps to improve the prediction accuracy of multivariable time series. The proposed model is contrasted with the LSTM model, the CNN-LSTM model, and the attention-based LSTM to predict the daily water demand time series in Suzhou, China. The results show that the hybrid model achieves higher prediction performance with the smallest mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), and largest correlation coefficient (R-2).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network
    Noor, Fahima
    Haq, Sanaulla
    Rakib, Mohammed
    Ahmed, Tarik
    Jamal, Zeeshan
    Siam, Zakaria Shams
    Hasan, Rubyat Tasnuva
    Adnan, Mohammed Sarfaraz Gani
    Dewan, Ashraf
    Rahman, Rashedur M.
    WATER, 2022, 14 (04)
  • [2] Correlational graph attention-based Long Short-Term Memory network for multivariate time series prediction
    Han, Shuang
    Dong, Hongbin
    Teng, Xuyang
    Li, Xiaohui
    Wang, Xiaowei
    APPLIED SOFT COMPUTING, 2021, 106
  • [3] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [4] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [5] Multivariate Time Series Classification With An Attention-Based Multivariate Convolutional Neural Network
    Tripathi, Achyut Mani
    Baruah, Rashmi Dutta
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [6] Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory
    Liu, Chunjing
    Liu, Zhen
    Yuan, Jia
    Wang, Dong
    Liu, Xin
    WATER, 2024, 16 (06)
  • [7] Hybrid attention-based Long Short-Term Memory network for sarcasm identification
    Pandey, Rajnish
    Kumar, Abhinav
    Singh, Jyoti Prakash
    Tripathi, Sudhakar
    APPLIED SOFT COMPUTING, 2021, 106
  • [8] Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life
    Jiang, Jehn-Ruey
    Lee, Juei-En
    Zeng, Yi-Ming
    SENSORS, 2020, 20 (01)
  • [9] Urban air quality index forecasting using multivariate convolutional neural network based customized stacked long short-term memory model
    Dey, Sweta
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 375 - 389
  • [10] A Temporal Window Attention-Based Window-Dependent Long Short-Term Memory Network for Multivariate Time Series Prediction
    Han, Shuang
    Dong, Hongbin
    ENTROPY, 2023, 25 (01)