A 172 μW Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data

被引:54
作者
Pamula, Venkata Rajesh [1 ,2 ]
Valero-Sarmiento, Jose Manuel [3 ]
Yan, Long [4 ,5 ]
Bozkurt, Alper [3 ]
Van Hoof, Chris [1 ,2 ]
Van Helleputte, Nick [4 ]
Yazicioglu, Refet Firat [4 ,6 ]
Verhelst, Marian [2 ]
机构
[1] IMEC, B-3000 Leuven, Belgium
[2] Katholieke Univ Leuven, B-3000 Leuven, Belgium
[3] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27606 USA
[4] IMEC, B-3001 Leuven, Belgium
[5] Samsung, Hwaseong, South Korea
[6] GSK Bio, London, England
基金
美国国家科学基金会;
关键词
Compressive sampling (CS); heart rate (HR); Lomb-Scargle periodogram (LSP); low power; photoplethysmography; LOW-POWER;
D O I
10.1109/TBCAS.2017.2661701
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Acompressive sampling (CS) photoplethysmographic (PPG) readout with embedded feature extraction to estimate heart rate (HR) directly from compressively sampled data is presented. It integrates a low-power analog front end together with a digital back end to perform feature extraction to estimate the average HR over a 4 s interval directly from compressively sampled PPG data. The application-specified integrated circuit (ASIC) supports uniform sampling mode (1x compression) as well as CS modes with compression ratios of 8x, 10x, and 30x. CS is performed through nonuniformly subsampling the PPG signal, while feature extraction is performed using least square spectral fitting through Lomb-Scargle periodogram. The ASIC consumes 172 mu W of power from a 1.2 V supply while reducing the relative LED driver power consumption by up to 30 times without significant loss of relevant information for accurate HR estimation.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 19 条
[1]  
Alhawari M, 2013, ISSCC DIG TECH PAP I, V56, P384, DOI 10.1109/ISSCC.2013.6487780
[2]   Photoplethysmography and its application in clinical physiological measurement [J].
Allen, John .
PHYSIOLOGICAL MEASUREMENT, 2007, 28 (03) :R1-R39
[3]  
[Anonymous], 2002, ANSIAAMIEC13
[4]   An ultra low power pulse oximeter sensor based on compressed sensing [J].
Baheti, Pawan K. ;
Garudadri, Harinath .
SIXTH INTERNATIONAL WORKSHOP ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS, PROCEEDINGS, 2009, :144-148
[5]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[6]   Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors [J].
Dixon, Anna M. R. ;
Allstot, Emily G. ;
Gangopadhyay, Daibashish ;
Allstot, David J. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2012, 6 (02) :156-166
[7]   A Sub-mW Fully-Integrated Pulse Oximeter Front-End [J].
Glaros, Konstantinos N. ;
Drakakis, Emmanuel M. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2013, 7 (03) :363-375
[8]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[9]  
Honglei W., 2006, SOLID STATE CIRCUITS, P119
[10]  
Pamula V. Rajesh, 2015, 2015 IEEE Sensors. Proceedings, P1, DOI 10.1109/ICSENS.2015.7370396