RAANet: A Residual ASPP with Attention Framework for Semantic Segmentation of High-Resolution Remote Sensing Images

被引:79
|
作者
Liu, Runrui [1 ]
Tao, Fei [1 ,2 ]
Liu, Xintao [2 ]
Na, Jiaming [3 ]
Leng, Hongjun [1 ]
Wu, Junjie [1 ]
Zhou, Tong [1 ,4 ]
机构
[1] Nantong Univ, Sch Geog Sci, Nantong 226007, Peoples R China
[2] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
[3] Nanjing Forestry Univ, Coll Civil Engn, Nanjing 210037, Peoples R China
[4] Jiangsu Yangtze River Econ Belt Res Inst, Nantong 226007, Peoples R China
基金
中国国家自然科学基金;
关键词
semantic segmentation; remote sensing; convolutional block attention module; dual attention module; residual structure; NETWORK;
D O I
10.3390/rs14133109
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Classification of land use and land cover from remote sensing images has been widely used in natural resources and urban information management. The variability and complex background of land use in high-resolution imagery poses greater challenges for remote sensing semantic segmentation. To obtain multi-scale semantic information and improve the classification accuracy of land-use types in remote sensing images, the deep learning models have been wildly focused on. Inspired by the idea of the atrous-spatial pyramid pooling (ASPP) framework, an improved deep learning model named RAANet (Residual ASPP with Attention Net) is constructed in this paper, which constructed a new residual ASPP by embedding the attention module and residual structure into the ASPP. There are 5 dilated attention convolution units and a residual unit in its encoder. The former is used to obtain important semantic information at more scales, and residual units are used to reduce the complexity of the network to prevent the disappearance of gradients. In practical applications, according to the characteristics of the data set, the attention unit can select different attention modules such as the convolutional block attention model (CBAM). The experimental results obtained from the land-cover domain adaptive semantic segmentation (LoveDA) and ISPRS Vaihingen datasets showed that this model can enhance the classification accuracy of semantic segmentation compared to the current deep learning models.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A Deformable Attention Network for High-Resolution Remote Sensing Images Semantic Segmentation
    Zuo, Renxiang
    Zhang, Guangyun
    Zhang, Rongting
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Res50-SimAM-ASPP-Unet: A Semantic Segmentation Model for High-Resolution Remote Sensing Images
    Cai, Jiajing
    Shi, Jinmei
    Leau, Yu-Beng
    Meng, Shangyu
    Zheng, Xiuyan
    Zhou, Jinghe
    IEEE ACCESS, 2024, 12 : 192301 - 192316
  • [3] SERNet: Squeeze and Excitation Residual Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaoyan
    Li, Linhui
    Di, Donglin
    Wang, Jian
    Chen, Guangsheng
    Jing, Weipeng
    Emam, Mahmoud
    REMOTE SENSING, 2022, 14 (19)
  • [4] A Frequency Attention-Enhanced Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhong, Jianyi
    Zeng, Tao
    Xu, Zhennan
    Wu, Caifeng
    Qian, Shangtuo
    Xu, Nan
    Chen, Ziqi
    Lyu, Xin
    Li, Xin
    REMOTE SENSING, 2025, 17 (03)
  • [5] LIGHT-WEIGHT ATTENTION SEMANTIC SEGMENTATION NETWORK FOR HIGH-RESOLUTION REMOTE SENSING IMAGES
    Liu, Siyu
    He, Changtao
    Bai, Haiwei
    Zhang, Yijie
    Cheng, Jian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2595 - 2598
  • [6] SEMANTIC SEGMENTATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES BASED ON SPARSE SELF-ATTENTION
    Sun, Li
    Zou, Huanxin
    Wei, Juan
    Li, Meilin
    Cao, Xu
    He, Shitian
    Liu, Shuo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3492 - 3495
  • [7] Global Multi-Attention UResNeXt for Semantic Segmentation of High-Resolution Remote Sensing Images
    Chen, Zhong
    Zhao, Jun
    Deng, He
    REMOTE SENSING, 2023, 15 (07)
  • [8] MsanlfNet: Semantic Segmentation Network With Multiscale Attention and Nonlocal Filters for High-Resolution Remote Sensing Images
    Bai, Lin
    Lin, Xiangyuan
    Ye, Zhen
    Xue, Dongling
    Yao, Cheng
    Hui, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] SCAttNet: Semantic Segmentation Network With Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images
    Li, Haifeng
    Qiu, Kaijian
    Chen, Li
    Mei, Xiaoming
    Hong, Liang
    Tao, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 905 - 909
  • [10] We Need to Communicate: Communicating Attention Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Meng, Xichen
    Zhu, Liqun
    Han, Yilong
    Zhang, Hanchao
    REMOTE SENSING, 2023, 15 (14)