Parabolic fitting method for quality factor estimation

被引:0
|
作者
Zhao, Yan [1 ,2 ]
Wang, Yongsheng [3 ]
Ren, Zhiming [4 ]
机构
[1] Yangtze Univ, Minist Educ & Hubei Prov, Cooperat Innovat Ctr Unconvent Oil & Gas, Wuhan, Peoples R China
[2] Yangtze Univ, Sch Geophys & Oil Resources, Wuhan, Peoples R China
[3] PetroChina Qinghai Oilfield Co, Xining, Peoples R China
[4] Changan Univ, Coll Geol Engn & Geomat, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
WAVE ATTENUATION;
D O I
10.1190/GEO2020-0961.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The quality factor Q has a wide application range in seis-mic data processing and interpretation. Compared with the commonly used methods of Q estimation (e.g., the spectral ratio method and the centroid frequency shift method), the logarithmic spectral area difference (LSAD) method exhibits better noise immunity. However, the LSAD method uses the area difference in one frequency band, and the Q values es-timated using this method are still unstable under the influ-ence of noise. We have developed a new parabolic fitting (PF) method to estimate Q. This method is an extension of the LSAD method. We derive an analytical relationship between Q and area difference curve of the logarithmic am-plitude spectra. Using the logarithmic area difference of multiple frequency bands to fit the parabola, we improve the accuracy and stability of Q estimation. In addition, the PF method does not require special assumptions regard-ing the source wavelet. We test the PF method in the pres-ence of noise and at varying bandwidths and compare the results with those obtained using the LSAD method. The results of the theoretical examples indicate that the PF method is noise resistant and stable. Applying the PF method to real zero-offset vertical seismic profiling records also indicates that the proposed method can reasonably and stably estimate the Q value of the formation.
引用
收藏
页码:V247 / V260
页数:14
相关论文
共 50 条
  • [1] Parabolic fitting method for quality factor estimation
    Zhao Y.
    Wang Y.
    Ren Z.
    Geophysics, 2022, 87 (04): : 1 - 84
  • [2] Robust estimation nonlinear fitting method for solving beam quality
    Jing, Wenbo
    Wang, Xiaoman
    Yang, Wenbo
    Jiang, Huilin
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2012, 41 (02): : 466 - 471
  • [3] Seismic quality factor estimation using frequency-dependent linear fitting
    Liu, Guochang
    Chen, Xiaohong
    Rao, Ying
    JOURNAL OF APPLIED GEOPHYSICS, 2018, 156 : 1 - 8
  • [4] Quality factor Q estimation based on linear fitting of centroid frequency curve
    Li, Junjun
    Wang, Zhizhang
    Zhang, Zhihuan
    Jiang, Dan
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2015, 50 (02): : 254 - 259
  • [5] Estimation of Ricean Factor Based on Fitting
    Fan Zhongqing
    Jiang Hong
    Wang Zhining
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (07)
  • [6] Application of fitting estimation method in GPS height fitting
    Cheng Qianwen
    Zhang Lu-ben
    Chen Honghua
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 2545 - +
  • [7] A fast robust geometric fitting method for parabolic curves
    Lopez-Rubio, Ezequiel
    Thurnhofer-Hemsi, Karl
    Beatriz Blazquez-Parra, Elidia
    David de Cozar-Macias, Scar
    Carmen Ladron-de-Guevara-Munoz, M.
    PATTERN RECOGNITION, 2018, 84 : 301 - 316
  • [8] Gaussian quadrature method with exponential fitting factor for two-parameter singularly perturbed parabolic problem
    Cheru, Shegaye Lema
    Duressa, Gemechis File
    Mekonnen, Tariku Birabasa
    BMC RESEARCH NOTES, 2024, 17 (01)
  • [9] NOTES ON AN APPROXIMATION METHOD FOR FITTING PARABOLIC EQUATIONS TO EXPERIMENTAL DATA
    Chapanis, A.
    PSYCHOMETRIKA, 1953, 18 (04) : 327 - 336
  • [10] Simple method for quality factor estimation in resonating MEMS structures
    Larsson, S.
    Johannisson, P.
    Kolev, D.
    Ohlsson, F.
    Nik, S.
    Liljeholm, J.
    Ebefors, T.
    Rusu, C.
    17TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2017), 2018, 1052