Using Homotopy WHEP technique for solving a stochastic nonlinear diffusion equation

被引:10
作者
El-Tawil, Magdy A. [1 ]
Al-Mulla, Noha A. [2 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math, Giza 12211, Egypt
[2] King Faisal Univ, Fac Sci, Dept Math, Dammam, Saudi Arabia
关键词
Homotopy perturbation; WHEP technique; Nonlinear diffusion equation; Homotopy WHEP; WIENER-HERMITE EXPANSION; PERTURBATION TECHNIQUE;
D O I
10.1016/j.mcm.2010.01.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the diffusion equation under square and cubic nonlinearities and stochastic nonhomogeneity is solved using the Homotopy WHEP technique. The homotopy perturbation method is introduced in the WHEP technique to deal with non-perturbative systems. The new technique is then used to solve the nonlinear diffusion equation by making comparisons with Homotopy perturbation method (HPM). The method of analysis is illustrated through case studies and figures. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1277 / 1284
页数:8
相关论文
共 33 条
[1]   RANDOM GENERALIZED SOLUTIONS TO HEAT EQUATION [J].
BECUS, GA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (01) :93-102
[2]  
BHARUCHAREID, 1965, 31 I MATH SCI
[3]   RELATIONSHIP BETWEEN A WIENER-HERMITE EXPANSION AND AN ENERGY CASCADE [J].
CROW, SC ;
CANAVAN, GH .
JOURNAL OF FLUID MECHANICS, 1970, 41 :387-&
[4]   1ST-ORDER WIENER-HERMITE EXPANSION IN THE ELECTROMAGNETIC SCATTERING BY CONDUCTING ROUGH SURFACES [J].
EFTIMIU, C .
RADIO SCIENCE, 1988, 23 (05) :769-779
[5]  
El-Tawil M., 1999, MECH MECH ENG, V3, P181
[6]  
El-Tawil M.A., 2003, INT J DIFFERENTIAL E, V7, P325
[7]  
El-Tawil MA, 2008, TOPOL METHOD NONL AN, V31, P315
[8]  
El-Tawil MA, 2009, LECT NOTES COMPUT SC, V5300, P143, DOI 10.1007/978-3-642-00212-0_8
[9]  
El-Tawil MA, 2008, LECT NOTES COMPUT SC, V4750, P159
[10]  
El-Tawil MA, 2009, INT J NONLIN SCI NUM, V10, P687