Soliton to the fractional Yamabe flow

被引:4
作者
Ho, Pak Tung [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
Fractional Yamabe problem; fractional Yamabe flow; Soliton; SCALAR CURVATURE FLOW; CONVERGENCE; CLASSIFICATION; MANIFOLDS; LAPLACIAN; RICCI;
D O I
10.1016/j.na.2016.02.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that soliton to the fractional Yamabe flow must have constant fractional order curvature. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 33 条
[1]  
Brendle S, 2005, J DIFFER GEOM, V69, P217
[2]   Convergence of the Yamabe flow in dimension 6 and higher [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :541-576
[3]   A complete classification of Ricci and Yamabe solitons of non-reductive homogeneous 4-spaces [J].
Calvaruso, Giovanni ;
Zaeim, Amirhesam .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 80 :15-25
[4]  
Cao HD, 2012, MATH RES LETT, V19, P767
[5]   The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3 [J].
Chang, SC ;
Cheng, JH .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) :111-121
[6]  
Chang SC, 2010, T AM MATH SOC, V362, P1681
[7]   A perturbation result for the Qγ curvature problem on Sn [J].
Chen, Guoyuan ;
Zheng, Youquan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 :4-14
[8]  
Choi W., ARXIV150100641V2MATH
[9]   THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :1003-1014
[10]   ON THE SCALAR CURVATURE ESTIMATES FOR GRADIENT YAMABE SOLITONS [J].
Chu, Yawei ;
Wang, Xue .
KODAI MATHEMATICAL JOURNAL, 2013, 36 (02) :246-257