Improvements of nitrogen removal and electricity generation in microbial fuel cell-constructed wetland with extra corncob for carbon- limited wastewater treatment

被引:42
作者
Tao, Mengni [1 ]
Jing, Zhaoqian [1 ]
Tao, Zhengkai [1 ]
Luo, Hui [1 ]
Zuo, Simin [1 ]
机构
[1] Nanjing Forestry Univ, Coll Civil Engn, Nanjing 210037, Peoples R China
关键词
Carbon-limited wastewater; Corncob addition; Alkali pretreatment; Nitrogen removal; Electricity generation; POLLUTANTS REMOVAL; COMMUNITY; BIOMASS; DENITRIFICATION; DEGRADATION; PRETREATMENT; ENHANCEMENT; PERFORMANCE; CONVERSION; STRAW;
D O I
10.1016/j.jclepro.2021.126639
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrogen residues in effluent from municipal wastewater treatment deteriorate aquatic ecosystem, and the common method is to add external carbon sources. Considering the low cost and easy availability, agricultural biomasses are often applied as the external carbon sources for carbon-limited wastewater treatment. This research estimated the feasibility of adding agricultural wastes to simultaneously enhance nitrogen removal and bioelectricity generation in microbial fuel cell-constructed wetland (MFC-CW), and the results were compared to those in MFC. Different agricultural wastes (corncob, straw, rice husk) were compared, and corncob showed a higher carbon release ability. The results revealed that the carbon release of corncob was a diffusion process, and fitted the second- order kinetics with the highest released chemical oxygen demand (COD) of 47.6 mg.(g.L)(-1). Corncob addition significantly enhanced the nutrients removal in MFC-CW with original influent COD of 22 mg L-1, and the maximum total nitrogen (TN), nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N) removals were 86.6 +/- 1.6%, 97.2 +/- 0.3%, 73.1 +/- 2.8%, respectively. Besides, the bioelectricity generation performance was also promoted with the maximum voltage and power density of 340 mV and 23.5 mW/m(3), whereas the internal resistance slightly increased. The findings provide an economic way for nitrogen removal, energy recovery and agricultural wastes management by MFC-CW when treating carbon-limited wastewater. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation
    Oon, Yoong-Ling
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Oon, Yoong-Sin
    Lehl, Harvinder Kaur
    Thung, Wei-Eng
    BIORESOURCE TECHNOLOGY, 2015, 186 : 270 - 275
  • [32] Mechanism involved in the treatment of sulfamethoxazole in wastewater using a constructed wetland microbial fuel cell system
    Dai, Meixue
    Zhang, Yujia
    Wu, Yiming
    Sun, Ruipeng
    Zong, Wansong
    Kong, Qiang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [33] Creating tidal flow via siphon for better pollutants removal in a microbial fuel cell-constructed wetland
    Tang, Cheng
    Zhao, Yaqian
    Kang, Chun
    He, Jintao
    Yang, Yan
    Morgan, David
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 290
  • [34] Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential
    Htet, Hsu Htet
    Dolphen, Rujira
    Jirasereeamornkul, Kamon
    Thiravetyan, Paitip
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (42) : 96163 - 96180
  • [35] Intensified nitrogen removal in the tidal flow constructed wetland-microbial fuel cell: Insight into evaluation of denitrifying genes
    Wang, Longmian
    Zhou, Ying
    Peng, Fuquan
    Zhang, Aiguo
    Pang, Qingqing
    Lian, Jianjun
    Zhang, Yimin
    Yang, Fei
    Zhu, Yueming
    Ding, Chengcheng
    Ni, Lixiao
    Cui, Yibin
    JOURNAL OF CLEANER PRODUCTION, 2020, 264
  • [36] Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation
    Yang, Yan
    Zhao, Yaqian
    Tang, Cheng
    Xu, Lei
    Morgan, David
    Liu, Ranbin
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [37] Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation
    Gonzalez, Thais
    Puigagut, Jaume
    Vidal, Gladys
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 753
  • [38] Saturated constructed wetland-microbial fuel cell system and effect on dissolved oxygen gradient, electricity generation and ammonium removal
    Gonzalez, Thais
    Miranda, Juan Pablo
    Gomez, Gloria
    Puigagut, Jaume
    Vidal, Gladys
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (04) : 624 - 638
  • [39] Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation
    Zhang, Guangyi
    Zhang, Hanmin
    Ma, Yanjie
    Yuan, Guangen
    Yang, Fenglin
    Zhang, Rong
    ENZYME AND MICROBIAL TECHNOLOGY, 2014, 60 : 56 - 63
  • [40] Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater
    Wang, Haiping
    Jiang, Sunny C.
    Wang, Yun
    Xiao, Bo
    BIORESOURCE TECHNOLOGY, 2013, 138 : 109 - 116