Phase-field systems with vectorial order parameters including diffusional hysteresis effects

被引:4
作者
Kenmochi, N
Sprekels, J
机构
[1] Chiba Univ, Dept Math, Fac Educ, Inage Ku, Chiba 2638522, Japan
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
parabolic systems; phase-field models; hysteresis; a priori estimates; existence; uniqueness; phase transitions;
D O I
10.3934/cpaa.2002.1.495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with phase-field systems of Penrose-Fife type which model the dynamics of a phase transition with non-conserved vectorial order parameter. The main novelty of the model is that the evolution of the order parameter vector is governed by a system consisting of one partial differential equation and one partial differential inclusion, which in the simplest case may be viewed as a diffusive approximation of the so-called multi-dimensional stop operator, which is one of the fundamental hysteresis operators. Results concerning existence, uniqueness and continuous dependence on data are presented which can be viewed as generalizations of recent results by the authors to cases where a diffusive hysteresis occurs.
引用
收藏
页码:495 / 511
页数:17
相关论文
共 18 条