Revisiting high-order Taylor methods for astrodynamics and celestial mechanics

被引:14
作者
Biscani, Francesco [1 ]
Izzo, Dario [2 ]
机构
[1] Heidelberg Univ, Ctr Astron ZAH, Max Planck Inst Astron, D-69117 Heidelberg, Germany
[2] European Space Agcy ESA, Adv Concepts Team, NL-2201 AZ Noordwijk, Netherlands
关键词
gravitation; methods: numerical; celestial mechanics; SYMPLECTIC INTEGRATORS; NUMERICAL-INTEGRATION; SERIES METHOD; IMPLEMENTATION; DYNAMICS; ACCURATE; ODES; MASS;
D O I
10.1093/mnras/stab1032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present heyoka, a new, modern and general-purpose implementation of Taylor's integration method for the numerical solution of ordinary differential equations. Detailed numerical tests focused on difficult high-precision gravitational problems in astrodynamics and celestial mechanics show how our general-purpose integrator is competitive with and often superior to state-of-the-art specialized symplectic and non-symplectic integrators in both speed and accuracy. In particular, we show how Taylor methods are capable of satisfying Brouwer's law for the conservation of energy in long-term integrations of planetary systems over billions of dynamical time-scales. We also show how close encounters are modelled accurately during simulations of the formation of the Kirkwood gaps and of Apophis' 2029 close encounter with the Earth (where heyoka surpasses the speed and accuracy of domain-specific methods). heyoka can be used from both C++ and python, and it is publicly available as an open-source project.
引用
收藏
页码:2614 / 2628
页数:15
相关论文
共 57 条
[1]  
Aarseth S. J., 2003, GRAVITATIONAL N BODY
[2]   Automatic implementation of the numerical Taylor series method: A MATHEMATICA and SAGE approach [J].
Abad, A. ;
Barrio, R. ;
Marco-Buzunariz, M. ;
Rodriguez, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :227-245
[3]   Algorithm 924: TIDES, a Taylor Series Integrator for Differential EquationS [J].
Abad, Alberto ;
Barrio, Roberto ;
Blesa, Fernando ;
Rodriguez, Marcos .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 39 (01)
[4]   Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides [J].
Agol, Eric ;
Dorn, Caroline ;
Grimm, Simon L. ;
Turbet, Martin ;
Ducrot, Elsa ;
Delrez, Laetitia ;
Gillon, Michael ;
Demory, Brice-Olivier ;
Burdanov, Artem ;
Barkaoui, Khalid ;
Benkhaldoun, Zouhair ;
Bolmont, Emeline ;
Burgasser, Adam ;
Carey, Sean ;
de Wit, Julien ;
Fabrycky, Daniel ;
Foreman-Mackey, Daniel ;
Haldemann, Jonas ;
Hernandez, David M. ;
Ingalls, James ;
Jehin, Emmanuel ;
Langford, Zachary ;
Leconte, Jeremy ;
Lederer, Susan M. ;
Luger, Rodrigo ;
Malhotra, Renu ;
Meadows, Victoria S. ;
Morris, Brett M. ;
Pozuelos, Francisco J. ;
Queloz, Didier ;
Raymond, Sean N. ;
Selsis, Franck ;
Sestovic, Marko ;
Triaud, Amaury H. M. J. ;
Grootel, Valerie Van .
PLANETARY SCIENCE JOURNAL, 2021, 2 (01)
[5]   Odeint - Solving Ordinary Differential Equations in C plus [J].
Ahnert, Karsten ;
Mulansky, Mario .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[6]   Accurate orbit propagation in the presence of planetary close encounters [J].
Amato, Davide ;
Bau, Giulio ;
Bombardelli, Claudio .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (02) :2079-2099
[7]  
Applegate J.H., 1986, USE SUPERCOMPUTERS S, P96
[8]   A HIERARCHICAL O(N-LOG-N) FORCE-CALCULATION ALGORITHM [J].
BARNES, J ;
HUT, P .
NATURE, 1986, 324 (6096) :446-449
[9]   Performance of the Taylor series method for ODEs/DAEs [J].
Barrio, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :525-545
[10]  
Bate R. R., 2020, FUNDAMENTALS ASTRODY