PI3K/AKT/mTOR Signaling Pathway Is Required for JCPyV Infection in Primary Astrocytes

被引:8
|
作者
Wilczek, Michael P. [1 ]
Armstrong, Francesca J. [1 ]
Mayberry, Colleen L. [1 ]
King, Benjamin L. [1 ,2 ]
Maginnis, Melissa S. [1 ,2 ]
机构
[1] Univ Maine, Dept Mol & Biomed Sci, Orono, ME 04469 USA
[2] Univ Maine, Grad Sch Biomed Sci & Engn, Orono, ME 04469 USA
基金
美国国家卫生研究院;
关键词
JC polyomavirus; PML; astrocytes; SVGA cells; primary cells; PI3K; AKT; mTOR; rapamycin; wortmannin; PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY; LARGE T-ANTIGEN; JC VIRUS-DNA; MATRIX-METALLOPROTEINASE EXPRESSION; MULTIPLE-SCLEROSIS; BK POLYOMAVIRUS; GENE-EXPRESSION; CELL BIOLOGY; GLIAL-CELLS; PROTEIN;
D O I
10.3390/cells10113218
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Astrocytes are a main target of JC polyomavirus (JCPyV) in the central nervous system (CNS), where the destruction of these cells, along with oligodendrocytes, leads to the fatal disease progressive multifocal leukoencephalopathy (PML). There is no cure currently available for PML, so it is essential to discover antivirals for this aggressive disease. Additionally, the lack of a tractable in vivo models for studying JCPyV infection makes primary cells an accurate alternative for elucidating mechanisms of viral infection in the CNS. This research to better understand the signaling pathways activated in response to JCPyV infection reveals and establishes the importance of the PI3K/AKT/mTOR signaling pathway in JCPyV infection in primary human astrocytes compared to transformed cell lines. Using RNA sequencing and chemical inhibitors to target PI3K, AKT, and mTOR, we have demonstrated the importance of this signaling pathway in JCPyV infection of primary astrocytes not observed in transformed cells. Collectively, these findings illuminate the potential for repurposing drugs that are involved with inhibition of the PI3K/AKT/mTOR signaling pathway and cancer treatment as potential therapeutics for PML, caused by this neuroinvasive virus.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Activation of PI3K/Akt/mTOR Pathway and Dual Inhibitors of PI3K and mTOR in Endometrial Cancer
    Chen, Jiezhong
    Zhao, Kong-Nan
    Li, Rui
    Shao, Renfu
    Chen, Chen
    CURRENT MEDICINAL CHEMISTRY, 2014, 21 (26) : 3070 - 3080
  • [32] Targeting PI3K/Akt/mTOR signaling in cancer
    Porta, Camillo
    Paglino, Chiara
    Mosca, Alessandra
    FRONTIERS IN ONCOLOGY, 2014, 4
  • [33] PI3K/AKT/MTOR SIGNALING IN OLIGODENDROCYTE DIFFERENTIATION
    Wood, T. L.
    Tyler, W. A.
    Gangoli, N.
    Gokina, P.
    Kim, H. A.
    Covey, M.
    Levison, S. W.
    JOURNAL OF NEUROCHEMISTRY, 2009, 110 : 141 - 141
  • [34] THE PI3K/AKT MTOR PATHWAY IN OLIGODENDROCYTE DIFFERENTIATION
    Wood, T.
    Tyler, W.
    Gangoli, N.
    Gokina, P.
    Kim, H.
    Covey, M.
    Levison, S.
    GLIA, 2009, 57 (13) : S20 - S20
  • [35] PI3K/AKT/mTOR
    Umemura, Shigeki
    Goto, Koichi
    JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (09) : S116 - S117
  • [36] Glucocorticoids Enhanced Osteoclast Autophagy Through the PI3K/Akt/mTOR Signaling Pathway
    Fu, Lingjie
    Wu, Wen
    Sun, Xiaojiang
    Zhang, Pu
    CALCIFIED TISSUE INTERNATIONAL, 2020, 107 (01) : 60 - 71
  • [37] PirB inhibits axonal outgrowth via the PI3K/Akt/mTOR signaling pathway
    Bi, Yong-Yan
    Quan, Yong
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 1093 - 1098
  • [38] Identification of a Role for the PI3K/AKT/mTOR Signaling Pathway in Innate Immune Cells
    Xie, Songbo
    Chen, Miao
    Yan, Bing
    He, Xianfei
    Chen, Xiwen
    Li, Dengwen
    PLOS ONE, 2014, 9 (04):
  • [39] Glucocorticoids Enhanced Osteoclast Autophagy Through the PI3K/Akt/mTOR Signaling Pathway
    Lingjie Fu
    Wen Wu
    Xiaojiang Sun
    Pu Zhang
    Calcified Tissue International, 2020, 107 : 60 - 71
  • [40] Scutellarin regulates osteoarthritis in vitro by inhibiting the PI3K/AKT/mTOR signaling pathway
    Ju, Shao-Hua
    Tan, Li-Rong
    Liu, Pan-Wang
    Tan, You-Li
    Zhang, Yuan-Ting
    Li, Xiao-Hong
    Wang, Ming-Jian
    He, Ben-Xiang
    MOLECULAR MEDICINE REPORTS, 2021, 23 (01)