Characterization of Porous BEOL Dielectrics for Resistive Switching

被引:15
作者
Fan, Y. [1 ]
King, S. [2 ]
Bielefeld, J. [2 ]
Orlowski, M. [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[2] Intel Corp, Log Technol Dev, Hillsboro, OR 97124 USA
来源
DIELECTRICS FOR NANOSYSTEMS 7: MATERIALS SCIENCE, PROCESSING, RELIABILITY, AND MANUFACTURING | 2016年 / 72卷 / 02期
关键词
NONVOLATILE MEMORY; CU; DEVICE; SPIN; INTERCONNECTS; TECHNOLOGY; MECHANISMS; CHALLENGES; STABILITY; BIPOLAR;
D O I
10.1149/07202.0035ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Porous back-end dielectric materials with porosity ranging from 8% to 25% have been characterized in terms of their resistive switching behavior. The porous dielectric is sandwiched between Cu and W or Pt electrodes. Some metal-insulator-metal structures have a 2 nm SiCN diffusion barrier at either electrode or at both electrodes. 90% of samples are intrinsically conductive due to strong Cu doping of the dielectric. About 10% of the samples display resistive switching behavior, of which devices with two SiCN barriers can be switched repeatedly, demonstrating that resistive switching in porous dielectrics is feasible. The forming voltage of the filaments increases with increasing porosity of the dielectric. Depending on the voltage polarity, Cu and oxygen vacancy conductive filaments can be formed. The properties of resistive switching established in this work provide a solid basis for further improvement of ReRAM devices based on porous dielectrics compatible with CMOS backend.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 71 条
[11]   RRAMs based on anionic and cationic switching: a short overview [J].
Clima, Sergiu ;
Sankaran, Kiroubanand ;
Chen, Yang Yin ;
Fantini, Andrea ;
Celano, Umberto ;
Belmonte, Attilio ;
Zhang, Leqi ;
Goux, Ludovic ;
Govoreanu, Bogdan ;
Degraeve, Robin ;
Wouters, Dirk J. ;
Jurczak, Malgorzata ;
Vandervorst, Wilfried ;
De Gendt, Stefan ;
Pourtois, Geoffrey .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (06) :501-511
[12]   Low resistivity α-tantalum in Cu/CVD low-k (Orion™) integration [J].
Donohue, H ;
Yeoh, JC ;
Giles, K ;
Buchanan, K .
MICROELECTRONIC ENGINEERING, 2002, 64 (1-4) :299-305
[13]   Reconfigurable Memristive Device Technologies [J].
Edwards, Arthur H. ;
Barnaby, Hugh J. ;
Campbell, Kristy A. ;
Kozicki, Michael N. ;
Liu, Wei ;
Marinella, Matthew J. .
PROCEEDINGS OF THE IEEE, 2015, 103 (07) :1004-1033
[14]   Ultimate limits of conventional barriers and liners-implications for the extendibility of copper metallization [J].
Eisenbraun, Eric .
MICROELECTRONIC ENGINEERING, 2012, 92 :67-70
[15]   Electrochemical processes and device improvement in conductive bridge RAM cells [J].
Goux, Ludovic ;
Valov, Ilia .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (02) :274-288
[16]   Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects-State of the art [J].
Grill, Alfred ;
Gates, Stephen M. ;
Ryan, Todd E. ;
Nguyen, Son V. ;
Priyadarshini, Deepika .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[17]   Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J].
Guan, Weihua ;
Long, Shibing ;
Liu, Qi ;
Liu, Ming ;
Wang, Wei .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (05) :434-437
[18]  
Hagen C., 2015, IEEE SPECTRUM, V7, P30
[19]   High-performance interconnects: An integration overview [J].
Havemann, RH ;
Hutchby, JA .
PROCEEDINGS OF THE IEEE, 2001, 89 (05) :586-601
[20]   Multiferroic magnetoelectric nanostructures for novel device applications [J].
Hu, Jia-Mian ;
Nan, Tianxiang ;
Sun, Nian X. ;
Chen, Long-Qing .
MRS BULLETIN, 2015, 40 (09) :728-735