Characterization of Porous BEOL Dielectrics for Resistive Switching

被引:15
作者
Fan, Y. [1 ]
King, S. [2 ]
Bielefeld, J. [2 ]
Orlowski, M. [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
[2] Intel Corp, Log Technol Dev, Hillsboro, OR 97124 USA
来源
DIELECTRICS FOR NANOSYSTEMS 7: MATERIALS SCIENCE, PROCESSING, RELIABILITY, AND MANUFACTURING | 2016年 / 72卷 / 02期
关键词
NONVOLATILE MEMORY; CU; DEVICE; SPIN; INTERCONNECTS; TECHNOLOGY; MECHANISMS; CHALLENGES; STABILITY; BIPOLAR;
D O I
10.1149/07202.0035ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Porous back-end dielectric materials with porosity ranging from 8% to 25% have been characterized in terms of their resistive switching behavior. The porous dielectric is sandwiched between Cu and W or Pt electrodes. Some metal-insulator-metal structures have a 2 nm SiCN diffusion barrier at either electrode or at both electrodes. 90% of samples are intrinsically conductive due to strong Cu doping of the dielectric. About 10% of the samples display resistive switching behavior, of which devices with two SiCN barriers can be switched repeatedly, demonstrating that resistive switching in porous dielectrics is feasible. The forming voltage of the filaments increases with increasing porosity of the dielectric. Depending on the voltage polarity, Cu and oxygen vacancy conductive filaments can be formed. The properties of resistive switching established in this work provide a solid basis for further improvement of ReRAM devices based on porous dielectrics compatible with CMOS backend.
引用
收藏
页码:35 / 50
页数:16
相关论文
共 71 条
[1]   Materials issues with thin film hydrogen silsesquioxane low K dielectrics [J].
Albrecht, MG ;
Blanchette, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (11) :4019-4025
[2]   Synergistic combinations of dielectrics and metallization process technology to achieve 22 nm interconnect performance targets [J].
Antonelli, G. A. ;
Jiang, G. ;
Shaviv, R. ;
Mountsier, T. ;
Dixit, G. ;
Park, K. J. ;
Karim, I. ;
Wu, W. ;
Shobha, H. ;
Spooner, T. ;
Soda, E. ;
Liniger, E. ;
Cohen, S. ;
Demarest, J. ;
Tagami, M. ;
Vander Straten, O. ;
Baumann, F. .
MICROELECTRONIC ENGINEERING, 2012, 92 :9-14
[3]   Plasma processing of low-k dielectrics [J].
Baklanov, Mikhail R. ;
de Marneffe, Jean-Francois ;
Shamiryan, Denis ;
Urbanowicz, Adam M. ;
Shi, Hualiang ;
Rakhimova, Tatyana V. ;
Huang, Huai ;
Ho, Paul S. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
[4]   Improved Switching Voltage Variation of Cu Atom Switch for Nonvolatile Programmable Logic [J].
Banno, Naoki ;
Tada, Munehiro ;
Sakamoto, Toshitsugu ;
Okamoto, Koichiro ;
Miyamura, Makoto ;
Iguchi, Noriyuki ;
Hada, Hiromitsu .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (11) :3827-3832
[5]   Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 [J].
Bernard, Y. ;
Renard, V. T. ;
Gonon, P. ;
Jousseaume, V. .
MICROELECTRONIC ENGINEERING, 2011, 88 (05) :814-816
[6]   Device and Architecture Outlook for Beyond CMOS Switches [J].
Bernstein, Kerry ;
Cavin, Ralph K., III ;
Porod, Wolfgang ;
Seabaugh, Alan ;
Welser, Jeff .
PROCEEDINGS OF THE IEEE, 2010, 98 (12) :2169-2184
[7]  
Bohr M., P 1995 IEEE INT INT
[8]   Microscopic and spectroscopic analysis of the nature of conductivity changes during resistive switching in silicon-rich silicon oxide [J].
Buckwell, Mark ;
Montesi, Luca ;
Mehonic, Adnan ;
Reza, Omer ;
Garnett, Leon ;
Munde, Manveer ;
Hudziak, Stephen ;
Kenyon, Anthony J. .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 12, NO 1-2, 2015, 12 (1-2) :211-217
[9]   Cu Interconnect Limitations and Opportunities for SWNT Interconnects at the End of the Roadmap [J].
Ceyhan, Ahmet ;
Naeemi, Azad .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (01) :374-382
[10]   Thermal Impact on the Activation of Resistive Switch in Silicon Oxide Based RRAM [J].
Chen, Yu-Ting ;
Chang, Ting-Chang ;
Huang, Jheng-Jie ;
Tseng, Hsueh-Chih ;
Yang, Po-Chun ;
Chu, Ann-Kuo ;
Yang, Jyun-Bao ;
Tsai, Ming-Jinn ;
Wang, Ying-Lang ;
Sze, Simon M. .
ECS SOLID STATE LETTERS, 2012, 1 (04) :P57-P59