Deep geometric convolutional network for automatic modulation classification

被引:8
作者
Li, Rundong [1 ,4 ]
Song, Chengtian [2 ]
Song, Yuxuan [3 ]
Hao, Xiaojun [3 ]
Yang, Shuyuan [3 ]
Song, Xiyu [1 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Beijing Inst Technol, Beijing, Peoples R China
[3] Xidian Univ, Xian, Peoples R China
[4] Southwest Elect & Telecommun Technol Res Inst, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; Deep learning; Wigner-Ville distribution; Geometric filters; RECOGNITION;
D O I
10.1007/s11760-020-01641-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A recent trend of automatic modulation classification is to automatically learn high-level abstraction of signals, instead of manually designing features for further classification. In this paper, we propose a new deep geometric convolutional network (DGCN) to hierarchically extract discriminative features from Wigner-Ville distribution map of signals. A group of geometric filters are constructed from a least square support vector machine, to capture the linear singularity existed in maps. The filters are cascaded to construct a deep network for extracting discriminative features and classifying signals with different modulation types. Some experiments are taken to investigate the performance of DGCN, and the results show that it can achieve high accuracy in classifying 15 types of modulation signals.
引用
收藏
页码:1199 / 1205
页数:7
相关论文
共 24 条
[1]   Automatic modulation classification of digital modulation signals with stacked autoencoders [J].
Ali, Afan ;
Fan Yangyu ;
Liu, Shu .
DIGITAL SIGNAL PROCESSING, 2017, 71 :108-116
[2]   Automatic Modulation Classification Using Deep Learning Based on Sparse Autoencoders With Nonnegativity Constraints [J].
Ali, Afan ;
Fan Yangyu .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (11) :1626-1630
[3]   Automatic Modulation Classification Using Combination of Genetic Programming and KNN [J].
Aslam, Muhammad Waqar ;
Zhu, Zhechen ;
Nandi, Asoke Kumar .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (08) :2742-2750
[4]  
Dai R, 2019, IEEE WCNC
[5]   Survey of automatic modulation classification techniques: classical approaches and new trends [J].
Dobre, O. A. ;
Abdi, A. ;
Bar-Ness, Y. ;
Su, W. .
IET COMMUNICATIONS, 2007, 1 (02) :137-156
[6]  
FLANDRIN P, 1990, INT CONF ACOUST SPEE, P2455, DOI 10.1109/ICASSP.1990.116088
[7]   On the Likelihood-Based Approach to Modulation Classification [J].
Hameed, Fahed ;
Dobre, Octavia A. ;
Popescu, Dimitrie C. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (12) :5884-5892
[8]   Low Complexity Automatic Modulation Classification Based on Order-Statistics [J].
Han, Lubing ;
Gao, Feifei ;
Li, Zan ;
Dobre, Octavia A. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (01) :400-411
[9]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[10]  
Kim B, 2016, I C INF COMM TECH CO, P579, DOI 10.1109/ICTC.2016.7763537