Nuclear Magnetic Resonance Measurement of Oil and Water Distributions in Spontaneous Imbibition Process in Tight Oil Reservoirs

被引:10
|
作者
Nie, Xiangrong [1 ,2 ]
Chen, Junbin [1 ,2 ]
机构
[1] Xian Shiyou Univ, Coll Petr Engn, Xian 710065, Shaanxi, Peoples R China
[2] Xian Shiyou Univ, Shaanxi Key Lab Well Stabil & Fluid & Rock Mech O, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
tight oil reservoir; spontaneous imbibition; nuclear magnetic resonance; pore scale; oil and water distribution; FRACTURED VERTICAL WELL; POROUS MATERIALS; GAS SHALES; FLOW; WETTABILITY; PERFORMANCE; RELAXATION; METHANE; MODEL; BRINE;
D O I
10.3390/en11113114
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Spontaneous imbibition of water into tight oil reservoirs is considered an effective way to improve tight oil recovery. We have combined testing techniques such as nuclear magnetic resonance, mercury injection capillary pressure, and magnetic resonance imaging to reveal the distribution characteristics of oil and water during the spontaneous imbibition process of tight sandstone reservoir. The experimental results were used to describe the dynamic process of oil-water distribution at the microscopic scale. The water phase is absorbed into the core sample by micropores and mesopores under capillary forces that dry away the original oil phase into the hydraulically connected macropores. The oil phase entering the macropores will drive away the oil in place and expel the original oil from the macropores. The results of magnetic resonance imaging clearly show that the remaining oil accumulates in the central region of the core because a large amount of water is absorbed in the late stage of spontaneous imbibition, and the water in the pores gradually connects to form a water shield that blocks the flow of the oil phase. We propose the spontaneous imbibition pathway, which can effectively explain the internal mechanisms controlling the spontaneous imbibition rate. The surface of the core tends to form many spontaneous imbibition pathways, so the rate of spontaneous imbibition is fast. The deep core does not easily form many spontaneous imbibition pathways, so the rate of spontaneous imbibition is slow. This paper reveals the pore characteristics and distribution of oil and water during the spontaneous imbibition process, which is of significance for the efficient development of tight oil.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Investigation of the Combination Mechanism of Spontaneous Imbibition and Water Flooding in Tight Oil Reservoirs Based on Nuclear Magnetic Resonance
    Tao, Lei
    Wang, Longlong
    Bai, Jiajia
    Zhang, Na
    Shi, Wenyang
    Zhu, Qingjie
    Xu, Zhengxiao
    Wang, Guoqing
    ENERGIES, 2024, 17 (03)
  • [2] STUDY ON MOVABILITY OF SPONTANEOUS IMBIBITION OIL RECOVERY FROM TIGHT RESERVOIRS BASED ON NUCLEAR MAGNETIC RESONANCE PORE CLASSIFICATION METHOD
    Li T.
    Gao H.
    Wang M.
    Feng Y.
    Wang C.
    Cheng Z.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (03): : 643 - 655
  • [3] Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir
    Wang, Xiangzeng
    Peng, Xiaolong
    Zhang, Shoujiang
    Du, Zhongwei
    Zeng, Fanhua
    FUEL, 2018, 224 : 280 - 288
  • [4] The Characteristics of Oil Migration due to Water Imbibition in Tight Oil Reservoirs
    Yang, Liu
    Wang, Shuo
    Tao, Zhigang
    Leng, Ruixi
    Yang, Jun
    ENERGIES, 2019, 12 (21)
  • [5] Investigations on spontaneous imbibition and the influencing factors in tight oil reservoirs
    Wang Jing
    Liu Huiqing
    Qian Genbao
    Peng Yongcan
    Gao Yang
    FUEL, 2019, 236 : 755 - 768
  • [6] The effects of various factors on spontaneous imbibition in tight oil reservoirs
    Cheng Liu
    TianRu Wang
    Qing You
    YueChun Du
    Guang Zhao
    CaiLi Dai
    Petroleum Science, 2024, 21 (01) : 315 - 326
  • [7] The effects of various factors on spontaneous imbibition in tight oil reservoirs
    Cheng Liu
    TianRu Wang
    Qing You
    YueChun Du
    Guang Zhao
    CaiLi Dai
    Petroleum Science, 2024, (01) : 315 - 326
  • [8] The effects of various factors on spontaneous imbibition in tight oil reservoirs
    Liu, Cheng
    Wang, Tian-Ru
    You, Qing
    Du, Yue-Chun
    Zhao, Guang
    Dai, Cai-Li
    PETROLEUM SCIENCE, 2024, 21 (01) : 315 - 326
  • [9] EOR of spontaneous imbibition by surfactant solution for tight oil reservoirs
    Shen A.
    Liu Y.
    Liang S.
    Wang F.
    Cai B.
    Gao Y.
    Liang, Shuang (liangshuang21@163.com), 2018, Totem Publishers Ltd (14) : 1521 - 1529
  • [10] Quantitative characterization of spontaneous and forced imbibition during soaking process in tight oil reservoirs
    Liu, Ziqing
    Xu, Long
    Wu, Shanglin
    Ding, Hongyu
    Gong, Houjian
    Zhao, Hailong
    Sun, Hai
    Dong, Mingzhe
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2025,