Immunosuppressive cells in tumor immune escape and metastasis

被引:314
作者
Liu, Yang [1 ,2 ]
Cao, Xuetao [1 ,2 ]
机构
[1] Chinese Acad Med Sci, Natl Key Lab Med Mol Biol, Beijing 100005, Peoples R China
[2] Chinese Acad Med Sci, Dept Immunol, Inst Basic Med Sci, Peking Union Med Coll, Beijing 100005, Peoples R China
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2016年 / 94卷 / 05期
关键词
Immunosuppressive cell; Immune escape; Tumor microenvironment; Metastasis; Cancer immunotherapy; REGULATORY T-CELLS; DENDRITIC CELLS; SUPPRESSOR-CELLS; CANCER-PATIENTS; CHECKPOINT BLOCKADE; MYELOID CELLS; PROMOTES; MACROPHAGES; PROGRESSION; IMMUNOTHERAPY;
D O I
10.1007/s00109-015-1376-x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 95 条
[1]   Turning macrophages on, off and on again [J].
Alderton, Gemma K. .
NATURE REVIEWS IMMUNOLOGY, 2014, 14 (03) :137-137
[2]   Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer [J].
Ali, Khaled ;
Soond, Dalya R. ;
Pineiro, Roberto ;
Hagemann, Thorsten ;
Pearce, Wayne ;
Lim, Ee Lyn ;
Bouabe, Hicham ;
Scudamore, Cheryl L. ;
Hancox, Timothy ;
Maecker, Heather ;
Friedman, Lori ;
Turner, Martin ;
Okkenhaug, Klaus ;
Vanhaesebroeck, Bart .
NATURE, 2014, 510 (7505) :407-+
[3]   Doxorubicin Eliminates Myeloid-Derived Suppressor Cells and Enhances the Efficacy of Adoptive T-Cell Transfer in Breast Cancer [J].
Alizadeh, Darya ;
Trad, Malika ;
Hanke, Neale T. ;
Larmonier, Claire B. ;
Janikashvili, Nona ;
Bonnotte, Bernard ;
Katsanis, Emmanuel ;
Larmonier, Nicolas .
CANCER RESEARCH, 2014, 74 (01) :104-118
[4]   Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer [J].
Almand, B ;
Clark, JI ;
Nikitina, E ;
van Beynen, J ;
English, NR ;
Knight, SC ;
Carbone, DP ;
Gabrilovich, DI .
JOURNAL OF IMMUNOLOGY, 2001, 166 (01) :678-689
[5]   PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma [J].
Ansell, Stephen M. ;
Lesokhin, Alexander M. ;
Borrello, Ivan ;
Halwani, Ahmad ;
Scott, Emma C. ;
Gutierrez, Martin ;
Schuster, Stephen J. ;
Millenson, Michael M. ;
Cattry, Deepika ;
Freeman, Gordon J. ;
Rodig, Scott J. ;
Chapuy, Bjoern ;
Ligon, Azra H. ;
Zhu, Lili ;
Grosso, Joseph F. ;
Kim, Su Young ;
Timmerman, John M. ;
Shipp, Margaret A. ;
Armand, Philippe .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (04) :311-319
[6]   Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse [J].
Bates, Gaynor J. ;
Fox, Stephen B. ;
Han, Cheng ;
Leek, Russell D. ;
Garcia, Jose F. ;
Harris, Adrian L. ;
Banham, Alison H. .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (34) :5373-5380
[7]   Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer [J].
Brahmer, Julie ;
Reckamp, Karen L. ;
Baas, Paul ;
Crino, Lucio ;
Eberhardt, Wilfried E. E. ;
Poddubskaya, Elena ;
Antonia, Scott ;
Pluzanski, Adam ;
Vokes, Everett E. ;
Holgado, Esther ;
Waterhouse, David ;
Ready, Neal ;
Gainor, Justin ;
Aren Frontera, Osvaldo ;
Havel, Libor ;
Steins, Martin ;
Garassino, Marina C. ;
Aerts, Joachim G. ;
Domine, Manuel ;
Paz-Ares, Luis ;
Reck, Martin ;
Baudelet, Christine ;
Harbison, Christopher T. ;
Lestini, Brian ;
Spigel, David R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (02) :123-135
[8]   Lymphocyte activation gene-3 (LAG-3, CD223) in plasmacytoid dendritic cells (pDCs): a molecular target for the restoration of active antitumor immunity [J].
Castelli, Chiara ;
Triebel, Frederic ;
Rivoltini, Licia ;
Camisaschi, Chiara .
ONCOIMMUNOLOGY, 2014, 3 (11) :e967146-1
[9]   An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy [J].
Chung, Alicia S. ;
Wu, Xiumin ;
Zhuang, Guanglei ;
Ngu, Hai ;
Kasman, Ian ;
Zhang, Jianhuan ;
Vernes, Jean-Michel ;
Jiang, Zhaoshi ;
Meng, Y. Gloria ;
Peale, Franklin V. ;
Ouyang, Wenjun ;
Ferrara, Napoleone .
NATURE MEDICINE, 2013, 19 (09) :1114-1123
[10]   IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis [J].
Coffelt, Seth B. ;
Kersten, Kelly ;
Doornebal, Chris W. ;
Weiden, Jorieke ;
Vrijland, Kim ;
Hau, Cheei-Sing ;
Verstegen, Niels J. M. ;
Ciampricotti, Metamia ;
Hawinkels, Lukas J. A. C. ;
Jonkers, Jos ;
de Visser, Karin E. .
NATURE, 2015, 522 (7556) :345-+