Renormalisation of q-Regularised Multiple Zeta Values

被引:7
作者
Ebrahimi-Fard, Kurusch [1 ]
Manchon, Dominique [2 ]
Singer, Johannes [3 ]
机构
[1] ICMAT, CINicolas Cabrera 13-15, Madrid 28049, Spain
[2] Univ Blaise Pascal, CNRS, UMR 6620, 3 Pl Vasarely,CS 60026, F-63178 Aubiere, France
[3] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
multiple zeta values; renormalisation; Hopf algebra; q-analogues; quasi-shuffle relation; QUANTUM-FIELD THEORY; HOPF-ALGEBRAS;
D O I
10.1007/s11005-016-0818-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a particular one-parameter family of q-analogues of multiple zeta values. The intrinsic q-regularisation permits an extension of these q-multiple zeta values to negative integers. Renormalised multiple zeta values satisfying the quasi-shuffle product are obtained using an Hopf-algebraic Birkhoff factorisation together with minimal subtraction.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 28 条
[11]   Renormalization of multiple zeta values [J].
Guo, Li ;
Zhang, Bin .
JOURNAL OF ALGEBRA, 2008, 319 (09) :3770-3809
[12]  
Hoffman M., 2012, PREPRINT
[13]   The algebra of multiple harmonic series [J].
Hoffman, ME .
JOURNAL OF ALGEBRA, 1997, 194 (02) :477-495
[14]   Quasi-shuffle products [J].
Hoffman, ME .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 11 (01) :49-68
[15]   Derivation and double shuffle relations for multiple zeta values [J].
Ihara, K ;
Kaneko, M ;
Zagier, D .
COMPOSITIO MATHEMATICA, 2006, 142 (02) :307-338
[16]   An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series [J].
Krattenthaler, C. ;
Rivoal, T. .
RAMANUJAN JOURNAL, 2007, 13 (1-3) :203-219
[17]  
Manchon D., 2010, CLAY MATH P, V12, P73
[18]   Nested Sums of Symbols and Renormalized Multiple Zeta Values [J].
Manchon, Dominique ;
Paycha, Sylvie .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (24) :4628-4697
[19]  
Manchon D, 2008, HBK ALGEBR, V5, P365, DOI 10.1016/S1570-7954(07)05007-3
[20]  
Medina JC, 2015, RAMANUJAN J, V37, P365, DOI 10.1007/s11139-014-9638-8